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. Chiches- All physicochemical and biological oscillators maintain a balance be-
tween destabilizing reactions (as, for example, intrinsic autocatalytic or am-

ture com- plifying reactions) and stabilizing processes. These two groups of processes

) tend to influence the period in opposite directions and may lead to tempera-

rotein en- ture compensation whenever their overall influence balances. This principle

ture com- of “antagonistic balance” has been tested for several chemical and biological
oscillators. The Goodwin negative feedback oscillator appears of particular

over: The interest for modeling the circadian clocks in Neurospora and Drosophila and

the Good- their temperature compensation. Remarkably, the Goodwin oscillator not only

gives qualitative, correct phase response curves for temperature steps and
temperature pulses, but also simulates the temperature behavior of Neuros-
pora frq and Drosophila per mutants almost quantitatively. The Goodwin
oscillator predicts that circadian periods are strongly dependent on the turn-
over of the clock mRNA or clock protein. A more rapid turnover of clock
mRNA or clock protein results, in short, a slower turnover in longer period
lengths. (Chronobiology International, 14(5), 499-510, 1997)
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TEMPERATURE COMPENSATION AND
GENERAL HOMEOSTASIS IN PERIOD

During the early studies of circadian oscillations, Pittendrigh discovered that the
Drosophila emergence rhythm was sufficiently temperature compensated to serve as a
useful clock (1). Temperature compensation means that the period of the rhythm remains
practically unchanged at different environmental temperatures as long as the temperature
remains constant. After Pittendrigh’s discovery, temperature compensation was soon
found in plants, unicells, and mammals. Today, temperature compensation is considered
to be an essential property of circadian rhythms in order to assure a precise day length
measurement uninfluenced by environmental temperature fluctuations (2-8). Tempera-
ture-compensation has also been observed in certain ultradian rhythms (9-13).

Interestingly, temperature compensation appears only to be one facet of a general
homeostatic mechanism (14) that keeps the circadian period constant against general
environmental fluctuations, such as, for example, nutrient supply, pH, and D,0.

Qu VALUES AND OVERALL ACTIVATION ENERGIES

To characterize the influence of temperature on an oscillatory or nonoscillatory
process, one may use either the overall activation energy or Q) values. Th. Q) value is
simply the ratio between reaction velocity v (or frequency f in an oscillatory process) at
temperature T + 10°C divided by the velocity (frequency) at temperature T, that is,

V(T +10°C) _ (T +10°C)
v~ AD

It should be kept in mind that Qy is a function of T. For temperature intervals T,
T, not exactly separated by 10°C, Q) can be calculated by

Qlo(T) =

f, -1,
Q= f% 2
1
and is related to the activation energy by
T, T
Eu=R~52 10 Qu 3)

where R is the gas constant. Generally, the activation energy E; is regarded to be tempera-
ture independent. E; is related to the rate constant k; by the Arrhenius equation

ki = Ai exp(—-Ei/RT) (4)

where A, is often treated as a constant.

For complex systems like enzyme-catalyzed reactions (15,16) the overall activation
energy may become dependent on the temperature.

Most circadian rhythms have Q) values near 1 and keep this value often with high
precision, although the underlying physiological processes have Q) vaiues of about 2 or
even higher.
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CONCEPT OF OPPOSING REACTIONS

In 1957, Hastings and Sweeney (17) suggested that “opposing™ reactions may ex-
plain the temperature compensation of the rhythm even if the underlying processes are
not temperature compensated themselves. A kinetic treatment of this approach is consid-

ered in Scheme 1:
@’
-~ ~

"DwR2
R1 '\ 1nh1b1tor C

V@@

- Clock

Scheme 1.

Process R1 (A — B) is assumed to control the period of the oscillator, while R2
(C — D) produces an inhibitor of reaction R1 (species D; due to its turnover, process
R3, D may be assumed to be in a steady state). In kinetic terms, the period of the rhythm
may increase (let us say) proportional to the rate of process R1 and inversely proportional
to the steady-state concentration of D. In such a case, using the Arrhenius equation
shows that temperature compensation is expected to occur when the activation energy E,
(relating to the temperature dependence of reaction R2) is equal to the sum of activation
energies E, and E;, that is,

Ez & E] + E3 (5)

Dunlap and Feldman (18) have used this concept to explain the temperature behav-
ior of the frg mutants in Neurospora crassa.

RATE CONSTANT RATIOS AND
DIFFUSION-CONTROLLED REACTIONS

Pavlidis and Kauzman (19) proposed a biochemical oscillator model for circadian
rhythms including activation and inactivation of an enzyme. To obtain temperature com-
pensation, three requirements were necessary: (i) rate constant ratios were assumed to be
temperature independent, (ii) certain rate constant values had to be assumed to be diffu-
sion controlled to become practically independent of temperature, (iii) the product be-
tween a rate constant k; and the steady-state concentration of an enzyme species e, ke,
had to be temperature independent.

Although these assumptions appear to be rather special, there is experimental evi-
dence that certain enzyme-catalyzed reactions (R4) in
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E+S —~——>Ellz ES —k2—> P+E (R4)
1

poikilothermic organisms show an “instantaneous” (20) temperature compensation. In
these systems, it was found that, for nonsaturating substrate (S) concentrations, Ky values
were increasing with temperature and thus compensating for the corresponding increase
in Vp,. The overall rate given by v=V..[S)Ky and the rate constant ratio kk)/
(k. +k, become independent of temperature. The mechanism that may lead to such a
compensation lies apparently in the temperature-induced conformational change of pro-
teins (21-23).

MEMBRANES AND TEMPERATURE COMPENSATION

Several biological membranes have been shown to adapt to different temperatures
(24), that is, maintain an unchanged fluidity by varying the ratio between saturated and
unsaturated lipids on changes in temperatures. The possibility that temperature compen-
sation of circadian clocks is related to membrane properties was proposed by Sweeney
(25) and Njus et al. (26,27). Different aspects of the role of membranes in circadian
rhythms can be found in reviews by Engelmann and Schrempf (28) and Vanden Driesche
(29). Lakin-Thomas, Brody, and Coté (30) give a review on temperature compensation
in Neurospora crassa and membrane composition.

CONCEPT OF ANTAGONISTIC BALANCE

When analyzing chemical oscillatory models, Ruoff found that any reaction kinetic
oscillator can, in principle, be temperature compensated (31). The reason for this is that
any chemical oscillator in general has two types of component processes (32), that is,
period-increasing and period-decreasing reactions. For each component process i, a rate
constant k; and a corresponding activation energy E; can be assigned. The temperature
dependence of the period P is a function of the temperature dependence of the rate
constants k;

P=f(k]’k29'--a--'akN) (6)

where N is the total number of component processes, m is the number of period-increas-
ing processes, and n is the number of period-decreasing processes with N=m + n. The
temperature dependence of P can then be written as

P = or\ ak,
7% (%) %) g

i=l

| x E (8)

RT* & |\ dln(k) ) XE; “RT 3 bE o

i
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In case of temperature-compensation, OP/0T =0, and we can split the sum in pe-

(R4) riod-increasing and period-decreasing contributions and get the condition for antagonistic
. (32) balance in temperature dependence:
ation. In 2 m
 values Yy  bE=- Y, bE (10)
increase i(P-decreasing) j(P-increasing)
io klkz)/

In other words, in any (reaction) kinetic oscillator temperature compensation is
> such a expected to occur whenever the E; weighted sum of dIn(H/0In(k;) of period-increasing

> of pro- reactions balances the corresponding sum of period-decreasing reactions.

Even for simple oscillator models, the function f is rarely described analytically,

' and approximative functions f,,, or numerical solutions to f must be sought. A useful
“Ansatz” is the following:

fappr =T H kiBi (11)

eratures l . . .

ted and because 9 In(fy,,)/0 In(k) = B.. In this approach, B; is assumed to be temperature indepen-

ompen- dent.

weeney

ircadian Model Oscillators Based on Autocatalysis

riesche : :

.nsation To test the validity of the antagonistic balance (Eq. 10), the Brusselator (31,33,34), i
the Kauffman-Wille model (34,35), and the Oregonator (36,37) were explicitly investi- i
gated. In these three oscillators, the driving force (32) of the oscillations is due to an ‘
intrinsic autocatalysis, and temperature compensation can be obtained over an extended
temperature range. Figure 1 shows the limit cycle behavior for the temperature-compen- j
sated Brusselator during a temperature step. It is seen that, although the period is practi- i

L cally identical for the two temperatures, there are different limit cycles for different
lfmetlc temperatures.

 is that Also, phase shifts are observed in the temperature-compensated Brusselator after

‘that 15, exposure to external temperature steps and temperature pulses. However, calculated

DLl phase response curves (PRCs) show no agreement with experimental PRCs from circa-

UG dian rhythms. Also, for the Kauffman-Wille model little resemblance to experimental

he rate phase response curves has been found (34).

(©) ' The Goodwin Model
ncr?l‘aixs_ In 1965, Goodwin described a biological oscillator based on a negative feedback
n. The

loop (38) (Fig. 2A). Now, about 30 years later, experimental evidence begins to emerge
that the core mechanism of the circadian thythms in Drosophila (39,40) and Neurospora
(41) represent such a negative feedback as considered originally by Goodwin. The impor-
%) tance of feedback control in circadian oscillators has also been emphasized by Johnsson
and Karlsson (42,43).

We have studied the temperature-compensated Goodwin oscillator in which vari-
®) ables X, Y, and Z represent clock mRNA, clock protein, and a transcriptional inhibitor,
respectively. Not only does the Goodwin oscillator show a principally correct phasing
between clock mRNA and clock protein (39; Fig. 2B), but phase response curves for
©) temperature steps and temperature pulses are now similar to what is experimentally ob-

‘ served (Figs. 2C, 2D).
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FIGURE 1. A. Limit cycles of the temperature-compensated Brusselator at 0°C and 40°C. The
antagonistic balance in temperature is 1.87E; + 0.954E, = 1.175E; + 0.984E,. E, = 6.57
kl/mol, E, = E; = E, = 14 kI/mol. “Temperature jump” indicates an instantaneous 0°C —»
40°C change. B. The corresponding 0°C — 40°C Jjump shown in a log [X] time plot. All rate
constants are 1.0 at 283 K.

Interestingly, by decreasing one of the rate constants of the degradation reactions
(ks), temperature compensation is lost and the response is similar to that observed in the
Neurospora crassa frq7 mutant (see Ref. 44, Table 1, Row 5). In fact, the temperature
behavior of frg Neurospora (45) and per Drosophila long- and short-period mutants (46)
can be understood in terms of degradation of the clock protein or the corresponding
clock mRNA,

In order to understand why in the Goodwin oscillator the degradation reactions
play a more dominant role than synthesis reactions, we have to consider the Goodwin
model as a set of amplification reactions in which intermediates X, Y, and Z are ap-
proaching (during the oscillations) alternatingly high and low steady-state values.

As Scheme 2 shows, for each intermediate I (X, Y, or Z), we have a synthesis rate
(dependent on rate constant Ksyns i.€., ki, ks, or k) and a degradation rate (dependent on
rate constant K, i.e., ky, ks, or k¢):
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0°C. The FIGURE 2. A. The Goodwin model with rate equations. Rate constants k; refer to reactions Ri. )
. = 6.57 The negative sign in the loop indicates the repression of X (mRNA) by a transcriptional inhibitor t
s 0°C — Z. Y is the clock protein. Y~ is a conformational state of the clock protein used in the Drosophila |
. All rate calculations. B. Concentration-time plots of clock-mRNA (X) and clock-protein (Y) representing
Neurospora wild-type behavior. Rate constants (@5°C): k; = ky = k3 = 1.0; k, = ks = 0.2; ks
= 0.1; k; = ky = kg = 0. Activation energies: E; =2.36 x 10* J/mol, E, = 9.26 x 10* J/mol,
E; = 6.25 x 10" J/mol, E, = 7.63 x 10? J/mol, Es = 1.92 x 10? J/mol, Eg = 2.02 x 10? J/mol.

_ Start concentrations: X = 1.051 x 107, Y = 5.583 x 102, Z = 2.713, T = 25°C. C. Phase
cactions response curve for temperature step ups. 1: 273.0 K — 274.0 K; 2: 273.0 K — 273.5 K. k, =k, !
d in the =k = 1.0,k =k = ks = 0.1 283 K). E1; = 1.832 x 10" J/mol, E, = 2.245 x 10° J/mol, E,
perature = 1,748 x 10" J/mol, E, = 296.434 J/mol, E; = 201.092 J/mol, E4 = 328.277 J/mol. Zero
nts (46) phase of perturbation corresponds to X maximum of 273 K limit cycle. D. Phase response curve
ponding for temperature step downs. 1: 274.0 K — 273.0 K; 2: 274.5 K — 273.0 K. Same parameters as

in C, but zero phase shift in 1 corresponds to X maximum of 274 K limit cycle and in 2 to X
sactions maximum of 274.5 K.
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The steady-state value of I, Iss, depends on both the synthesis and degradation rate con-
stants, that is, Iy = Kynn/ke,. However, the time scale of approach to the steady state is
only dependent on the degradation rate constant s as the time development of I(t)
shows:

I(t) =Ty ™" + Ko (1 - et (12)

kdegr
which is the reason why, in the Goodwin model, the synthesis rate constants k;, k,, and
k; (Fig. 2A) have practically no influence on the period length (for numerical values, see
also Table 1 in Ref. 47). : '

The temperature behavior of the short-period mutants (frgl, perS) can be under-
stood by an increased degradation of the clock protein, while in the long-period mutants
the clock protein (or clock mRNA) is degraded more slowly than in the wild-type forms
(Fig. 3). For perL, an additional temperature-dependent equilibriuom between two forms
of the clock protein (Y’, Y) has to be considered (Fig. 2A) in order to simulate the
temperature behavior (Fig. 3CD) (47). In fact, recent studies have shown that a PAS-C
domain interaction within PER (48,49) or an interaction between PER and TIMELESS
proteins (50-53) are important for the regulation of PER and for understanding tempera-
ture compensation in per mutants.

GENERAL HOMEOSTASIS IN PERIOD

The rate constants in Eq. 1 may not only depend on temperature, but on a variety
of other environmental parameters &, such as, for example, pH, ionic strength, and D,0.
In this case, the variation of P against & becomes

P (ar |3k
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FIGURE 3. A. Calculated temperature behavior of Neurospora frq mutants. E; is the activation
energy of rate constant Ri. The numerical parameters are wild-type, see legend of Fig. 2B; Jrq-7:
ks = 0.1 25°C), Es = 5.0 x 10* J/mol. The other parameters are as for the wild-type. B.
Experimental results replotted from the work by Gardner and Feldman (45). C. Calculated
temperature behavior of Drosophila melanogaster per mutants. The numerical parameters are:
per': By = 2.36 x 10* J/mol, E, = 9.26 x 10* J/mol, E3 = 6.25 x 10* J/mol, E, = 7.63 x 10°
Jimol, Es = 1.92 x 10° J/mol, Eg = 2.02 x 10° J/mol, E, = E, = Eo = 1.0 x 10? J/mol. Rate
constants (25°C): k; = k, = k; = 1.0, k, = 0.15, ks = 0.25, ks = 0.1, k; = 0.25, k; = ky =
1.0. per®: ks = k; = 0.4 (25°C), E5 = 5 x 10* J/mol; other parameters as for per”. per*: ks =
0.3, k; = 0.15 (25°C); E; = 2.5 x 10* Jimol, By = 1.0 x 10° J/mol; other parameters as for
per”. D. Experimental results replotted from the work by Konopka, Pittendrigh, and Orr (46).

Because the df/dk; term will still be positive or negative, additional antagonistic balances
in & can be formulated when dP/d = 0. General homeostasis of the period may be under-
stood due to antagonistic balances in all physicochemical or physiological parameters
that influence the component processes of the clock mechanism (54).
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