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PrRoOBLEM 19:

With the boost generator S from eq. (15.15) we find:
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Now, for any 3-vector v we have, using eq. (13.16):
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Thus, since BQ = 1,5, we find:
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PrRoOBLEM 20:

[There was an unfortunate printing error in V' in the first version of this problem]|
a) We find:
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and:



b)

We find from the solution for u(p) in the Weyl representation, eq. (16.9):
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Here we can insert for the square roots involving the Pauli matrices from the ex-
pressions used to find u(p) in lecture notes 16, with ¢ — 3 - o = og:
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But, from cosh 3 = P°/m = w,/m:
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we find:
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In the non-relativistic limit we have w, = \/m? + p2 — m + p*/2m, so

2m + %5

wie) = \/%0'55 %mKﬁfmﬁ)JrO(mi)} '

Thus to the lowest order in p/m the upper component is the dominant one, describing
just the constant amplitude of a plane wave. The lower component is the first order
relativistic correction, which is a pure spin-orbit coupling. [This is the reason the
Bjorken—Drell representation is often used in situations where relativistic effects are
relatively small].



PROBLEM 21:

a) In the Weyl representation the Dirac equation can be written:
Wy —mu@) = | P7) —mi| up) = 0.
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Inserting the given expression for u(p) and using the hint, we find:
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b) [Skipped, because we need to include an extra discussion of the signs of the compo-
nents of p#.]

c) We se that VI =V,
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d) We find:
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e) Since both w(p) = u(p) and w(p) = v(p) are solutions of the Dirac equation with
p’ = +w,, we have
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Thus the eigenvalues of H are +w,,, and H, as any Hermitean matrix, is diagonalized
by the matrix of its eigenvectors, which is V. Hence:
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f) These are obviously:

u(p) = (g) , u(p) = (2)

for an arbitrary 2-spinor £, with eigenvalues w, for u(p), —w, for v(p), so ¢ (z) is
just plane of fixed spin, described by &.



