UNIVERSITETET I STAVANGER

INSTITUTT FOR MATEMATIKK OG NATURVITENSKAP

FYS 610 Many-particle quantum mechanics

Suggested solutions, exercises for 31 March 2017

PROBLEM 19:

With the boost generator S^{0i} from eq. (15.15) we find:

$$D(\boldsymbol{\beta}) = e^{-\frac{\beta}{2} \begin{pmatrix} \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} & 0\\ 0 & \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} \end{pmatrix}}$$

Now, for any 3-vector \mathbf{v} we have, using eq. (13.16):

$$(\mathbf{v} \cdot \boldsymbol{\sigma})^2 = v^i v^j (\delta_{ij} \mathbb{1}_2 + i\epsilon_{ijk} \boldsymbol{\sigma}^k) = \mathbf{v}^2 \mathbb{1}_2,$$

$$(\mathbf{v} \cdot \boldsymbol{\sigma})^{2n} = (\mathbf{v}^2)^n, \qquad (\mathbf{v} \cdot \boldsymbol{\sigma})^{2n+1} = (\mathbf{v}^2)^n (\mathbf{v} \cdot \boldsymbol{\sigma}).$$

Thus, since $\hat{\boldsymbol{\beta}}^2 = \mathbb{1}_2$, we find:

$$\begin{split} D(\boldsymbol{\beta}) &= \sum_{n=0}^{\infty} \frac{\left(-\frac{\beta}{2}\right)^n}{n!} \begin{pmatrix} \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} & 0 \\ 0 & \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} \end{pmatrix}^n \\ &= \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & \mathbb{1}_2 \end{pmatrix} \sum_{n=0}^{\infty} \frac{\left(\frac{\beta}{2}\right)^{2n}}{(2n)!} - \begin{pmatrix} \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} & 0 \\ 0 & \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} \end{pmatrix} \sum_{n=0}^{\infty} \frac{\left(\frac{\beta}{2}\right)^{2n+1}}{(2n+1)!} \\ &= \cosh \frac{\beta}{2} \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & \mathbb{1}_2 \end{pmatrix} - \sinh \frac{\beta}{2} \begin{pmatrix} \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} & 0 \\ 0 & \hat{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} \end{pmatrix}. \end{split}$$

PROBLEM 20:

[There was an unfortunate printing error in V in the first version of this problem]

a) We find:

$$\begin{split} \gamma'^0 &= V^\dagger \gamma^0 V = \frac{1}{2} \begin{pmatrix} \mathbb{1}_2 & \mathbb{1}_2 \\ -\mathbb{1}_2 & \mathbb{1}_2 \end{pmatrix} \begin{pmatrix} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{pmatrix} \begin{pmatrix} \mathbb{1}_2 & -\mathbb{1}_2 \\ \mathbb{1}_2 & \mathbb{1}_2 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} \mathbb{1}_2 & \mathbb{1}_2 \\ -\mathbb{1}_2 & \mathbb{1}_2 \end{pmatrix} \begin{pmatrix} \mathbb{1}_2 & \mathbb{1}_2 \\ \mathbb{1}_2 & -\mathbb{1}_2 \end{pmatrix} = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}. \end{split}$$

and:

$$\begin{split} \gamma'^{i} &= V^{\dagger} \gamma^{i} V = \frac{1}{2} \begin{pmatrix} \mathbbm{1}_{2} & \mathbbm{1}_{2} \\ -\mathbbm{1}_{2} & \mathbbm{1}_{2} \end{pmatrix} \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} \mathbbm{1}_{2} & -\mathbbm{1}_{2} \\ \mathbbm{1}_{2} & \mathbbm{1}_{2} \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} \mathbbm{1}_{2} & \mathbbm{1}_{2} \\ -\mathbbm{1}_{2} & \mathbbm{1}_{2} \end{pmatrix} \begin{pmatrix} \sigma^{i} & \sigma^{i} \\ -\sigma^{i} & \sigma^{i} \end{pmatrix} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \;. \end{split}$$

b) We find from the solution for u(p) in the Weyl representation, eq. (16.9):

$$u'(p) = V^{\dagger} u(p) = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbb{1}_{2} & \mathbb{1}_{2} \\ -\mathbb{1}_{2} & \mathbb{1}_{2} \end{pmatrix} \begin{pmatrix} \sqrt{p \cdot \sigma} \xi \\ \sqrt{p \cdot \overline{\sigma}} \xi \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} [\sqrt{p \cdot \sigma} + \sqrt{p \cdot \overline{\sigma}}] \xi \\ [\sqrt{p \cdot \sigma} - \sqrt{p \cdot \overline{\sigma}}] \xi \end{pmatrix}$$

Here we can insert for the square roots involving the Pauli matrices from the expressions used to find u(p) in lecture notes 16, with $\sigma^3 \to \hat{\beta} \cdot \boldsymbol{\sigma} = \sigma_{\beta}$:

$$\sqrt{\frac{p \cdot \sigma}{m}} = \cosh \frac{\beta}{2} \mathbb{1}_2 + \sinh \frac{\beta}{2} \sigma_{\beta}$$

$$\sqrt{\frac{p \cdot \bar{\sigma}}{m}} = \cosh \frac{\beta}{2} \mathbb{1}_2 - \sinh \frac{\beta}{2} \sigma_{\beta}.$$

Thus:

$$u'(p) = \sqrt{2m} \begin{pmatrix} \cosh \frac{\beta}{2} \xi \\ \sinh \frac{\beta}{2} \sigma_{\beta} \xi \end{pmatrix}$$

But, from $\cosh \beta = P^0/m = \omega_p/m$:

$$\cosh\frac{\beta}{2} = \sqrt{\frac{\cosh\beta + 1}{2}} = \sqrt{\frac{\omega_p + m}{2m}} \qquad \sinh\frac{\beta}{2} = \sqrt{\frac{\cosh\beta - 1}{2}} = \sqrt{\frac{\omega_p - m}{2m}}.$$

we find:

$$u'(p) = \begin{pmatrix} \sqrt{\omega_p + m} \, \xi \\ \sqrt{\omega_p - m} \, \sigma_\beta \, \xi \end{pmatrix}.$$

c) In the non-relativistic limit we have $\omega_p = \sqrt{m^2 + p^2} \to m + p^2/2m$, so

$$u'(p) \to \left(\frac{\sqrt{2m + \frac{p^2}{2m}}\,\xi}{\sqrt{\frac{p^2}{2m}}\,\sigma_\beta\,\xi}\right) \approx \sqrt{2m}\left[\left(\frac{\xi}{\frac{p}{2m}\sigma_\beta\,\xi}\right) + \mathcal{O}\left(\frac{p^2}{m^2}\right)\right]\,.$$

Thus to the lowest order in p/m the upper component is the dominant one, describing just the constant amplitude of a plane wave. The lower component is the first order relativistic correction, which is a pure spin-orbit coupling. [This is the reason the Bjorken–Drell representation is often used in situations where relativistic effects are relatively small].

PROBLEM 21:

a) In the Weyl representation the Dirac equation can be written:

$$(p^{\mu}\gamma_{\mu} - m)u(p) = \begin{bmatrix} \begin{pmatrix} 0 & p \cdot \sigma \\ p \cdot \bar{\sigma} & 0 \end{pmatrix} - m\mathbb{1}_4 \end{bmatrix} u(p) = 0.$$

Inserting the given expression for u(p) and using the hint, we find:

$$\begin{split} p^{\mu}\gamma_{\mu}u(p) &= \begin{pmatrix} 0 & p\cdot\sigma \\ p\cdot\bar{\sigma} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{p\cdot\sigma}\,\xi \\ \sqrt{p\cdot\bar{\sigma}}\,\xi \end{pmatrix} = \begin{pmatrix} (p\cdot\sigma)\sqrt{p\cdot\bar{\sigma}}\,\xi \\ (p\cdot\bar{\sigma})\sqrt{p\cdot\sigma}\,\xi \end{pmatrix} \\ &= m \begin{pmatrix} \sqrt{p\cdot\sigma}\,\xi \\ \sqrt{p\cdot\bar{\sigma}}\,\xi \end{pmatrix} = mu\left(p\right). \end{split}$$

- b) [Skipped, because we need to include an extra discussion of the signs of the components of p^{μ} .]
- c) We se that $V^{\dagger} = V$.

$$V^{\dagger}V = \frac{1}{p^0} \begin{pmatrix} \sqrt{p \cdot \sigma} & \sqrt{p \cdot \bar{\sigma}} \\ \sqrt{p \cdot \bar{\sigma}} & -\sqrt{p \cdot \sigma} \end{pmatrix}^2 = \frac{1}{2p^0} \begin{pmatrix} p \cdot \sigma + p \cdot \bar{\sigma} & 0 \\ 0 & p \cdot \sigma + p \cdot \bar{\sigma} \end{pmatrix} = \mathbb{1}_4 .$$

since $p \cdot \sigma + p \cdot \bar{\sigma} = 2p^0 \mathbb{1}_2$.

d) We find:

$$H = \gamma^0(\boldsymbol{\gamma} \cdot \mathbf{p} + m) = \begin{pmatrix} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{pmatrix} \begin{pmatrix} m & \mathbf{p} \cdot \boldsymbol{\sigma} \\ -\mathbf{p} \cdot \boldsymbol{\sigma}, & m \end{pmatrix} = \begin{pmatrix} -\mathbf{p} \cdot \boldsymbol{\sigma} & m \\ m & \mathbf{p} \cdot \boldsymbol{\sigma} \end{pmatrix}.$$

e) Since both w(p) = u(p) and w(p) = v(p) are solutions of the Dirac equation with $p^0 = \pm \omega_p$, we have

$$(p^{\mu}\gamma_{\mu} - m)w(p) = (\pm \gamma^{0}\omega_{p} - \mathbf{p} \cdot \boldsymbol{\gamma} - m)w(u)$$
$$\pm \omega_{n}w(p) = \gamma^{0}(\boldsymbol{\gamma} \cdot \mathbf{p} + m)w(p) = Hw(p).$$

Thus the eigenvalues of H are $\pm \omega_p$, and H, as any Hermitean matrix, is diagonalized by the matrix of its eigenvectors, which is V. Hence:

$$H' = V^{\dagger} H V = \begin{pmatrix} \omega_p & 0 & 0 & 0 \\ 0 & \omega_p & 0 & 0 \\ 0 & 0 & -\omega_p & 0 \\ 0 & 0 & 0 & -\omega_p \end{pmatrix}.$$

f) These are obviously:

$$u(p) = \begin{pmatrix} \xi \\ 0 \end{pmatrix}, \qquad v(p) = \begin{pmatrix} 0 \\ \xi \end{pmatrix},$$

for an arbitrary 2-spinor ξ , with eigenvalues ω_p for u(p), $-\omega_p$ for v(p), so $\psi(x)$ is just plane of fixed spin, described by ξ .