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Problem 19:

With the boost generator S0i from eq. (15.15) we find:

D(β) = e
− β2

(
β̂ · σ 0
0 β̂ · σ

)

Now, for any 3-vector v we have, using eq. (13.16):

(v · σ)2 = vivj(δij12 + iεijkσk) = v212 ,

(v · σ)2n = (v2)n , (v · σ)2n+1 = (v2)n(v · σ) .

Thus, since β̂
2
= 12, we find:

D(β) =
∞∑

n=0

(−β2 )
n

n!

(
β̂ · σ 0
0 β̂ · σ

)n

=
(

12 0
0 12

) ∞∑

n=0

(β2 )
2n

(2n)! −
(
β̂ · σ 0
0 β̂ · σ

) ∞∑

n=0

(β2 )
2n+1

(2n+ 1)!

= cosh β2

(
12 0
0 12

)
− sinh β2

(
β̂ · σ 0
0 β̂ · σ

)
.

Problem 20:

[There was an unfortunate printing error in V in the first version of this problem]

a) We find:

γ′0 = V †γ0V = 1
2

(
12 12
−12 12

)(
0 12
12 0

)(
12 −12
12 12

)

= 1
2

(
12 12
−12 12

)(
12 12
12 −12

)
=
(

12 0
0 −12

)
.

and:
γ′ i = V †γiV = 1

2

(
12 12
−12 12

)(
0 σi

−σi 0

)(
12 −12
12 12

)

= 1
2

(
12 12
−12 12

)(
σi σi

−σi σi

)
=
(

0 σi

−σi 0

)
.
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b) We find from the solution for u(p) in the Weyl representation, eq. (16.9):

u′(p) = V † u(p) = 1
√
2

(
12 12
−12 12

)(√
p · σ ξ√
p · σ̄ ξ

)

= 1
√
2

([
√
p · σ +

√
p · σ̄] ξ

[
√
p · σ −

√
p · σ̄] ξ

)

Here we can insert for the square roots involving the Pauli matrices from the ex-
pressions used to find u(p) in lecture notes 16, with σ3 → β̂ · σ = σβ :

√
p · σ

m
= cosh β2 12 + sinh β2 σβ√

p · σ̄

m
= cosh β2 12 − sinh β2 σβ .

Thus:

u′(p) =
√
2m
( cosh β

2 ξ

sinh β
2 σβξ

)

But, from cosh β = P 0/m = ωp/m:

cosh β2 =
√

cosh β + 1
2 =

√
ωp +m

2m sinh β2 =
√

cosh β − 1
2 =

√
ωp −m

2m .

we find:
u′(p) =

( √
ωp +mξ

√
ωp −mσβ ξ

)
.

c) In the non-relativistic limit we have ωp =
√
m2 + p2 → m+ p2/2m, so

u′(p)→





√
2m+ p2

2m ξ
√

p2

2m σβ ξ



 ≈
√
2m
[(

ξ
p

2mσβ ξ

)
+O

(
p2

m2

)]
.

Thus to the lowest order in p/m the upper component is the dominant one, describing
just the constant amplitude of a plane wave. The lower component is the first order
relativistic correction, which is a pure spin-orbit coupling. [This is the reason the
Bjorken–Drell representation is often used in situations where relativistic effects are
relatively small].
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Problem 21:

a) In the Weyl representation the Dirac equation can be written:

(pµγµ −m)u(p) =
[(

0 p · σ
p · σ̄ 0

)
−m14

]
u(p) = 0 .

Inserting the given expression for u(p) and using the hint, we find:

pµγµu(p) =
(

0 p · σ
p · σ̄ 0

)(√
p · σ ξ√
p · σ̄ ξ

)

=
(
(p · σ)

√
p · σ̄ ξ

(p · σ̄)√p · σ ξ

)

= m

(√
p · σ ξ

√
p · σ̄ ξ

)

= mu (p) .

b) [Skipped, because we need to include an extra discussion of the signs of the compo-
nents of pµ.]

c) We se that V † = V .

V †V = 1
p0

(√
p · σ

√
p · σ̄√

p · σ̄ −
√
p · σ

)2
= 1

2p0

(
p · σ + p · σ̄ 0

0 p · σ + p · σ̄

)
= 14 .

since p · σ + p · σ̄ = 2p012.

d) We find:

H = γ0(γ · p +m) =
(

0 12
12 0

)(
m p · σ

−p · σ, m

)
=
(
−p · σ m
m p · σ

)
.

e) Since both w(p) = u(p) and w(p) = v(p) are solutions of the Dirac equation with
p0 = ±ωp, we have

(pµγµ −m)w(p) = (±γ0ωp − p · γ −m)w(u)
±ωpw(p) = γ0(γ · p +m)w(p) = Hw(p) .

Thus the eigenvalues of H are ±ωp, and H, as any Hermitean matrix, is diagonalized
by the matrix of its eigenvectors, which is V . Hence:

H ′ = V †HV =





ωp 0 0 0
0 ωp 0 0
0 0 −ωp 0
0 0 0 −ωp



 .

f) These are obviously:

u(p) =
(
ξ

0

)
, v(p) =

(
0
ξ

)
,

for an arbitrary 2-spinor ξ, with eigenvalues ωp for u(p), −ωp for v(p), so ψ(x) is
just plane of fixed spin, described by ξ.
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