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Problem 17:

a) Replacing the propagator in S (7.93), one finds, absorbing ε in Γ :

iMs =
−ig2

s−m2 + imΓ .

The cross section follows as in S (7.96) for the s-channel alone (x = s/m2):

dσ
dΩ = g4

64π2E2
CM

1
(s−m2)2 +m2Γ 2

= g4

64π2E2
CM

1
(x− 1)2 +

(
Γ
m

)2 .

b)

Plot of the cross section (arbitrary units) for Γ/m = 0.1 (left) and Γ/m = 3 (right).

c) With f(x) = 1
x+iε we find:

lim
ε→0

Imf(x) = lim
ε→0

Im x− iε
x2 + ε2

= lim
ε→0
−

ε

x2 + ε2
= 0 (x 6= 0) .

Furthermore for ε > 0:
∫ ∞

−∞
dx Imf(x) = −ε

∫ ∞

−∞

dx
x2 + ε2

= −ε1
ε
arctan

(x
ε

) ∣∣∣
∞

−∞
= −π −→

ε→ 0 − π .

Thus we must have limε→0 f(x) = −πδ(x), and the result follows by setting x =
p2 −m2. [The integral could also have been done by contour integration.]
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d) With the φ propagators as fully drawn lines and the ψ propagators as dashed lines,
we have:

where µ and Γ are both proportional to g2. One can sum this series just as we did
in Problem 15 (S problem 7.4) and in lecture note 10. Even the loop contains an
imaginary part, we can sum the diagrams as before, obtaining:

D̃F (p) =
D̃0
F (p)

1 + i(µ2 − iµΓ )D̃0
F (p)

= 1
(
D̃0
F (p)

)−1
+ i(µ2 − iµΓ )

= i
p2 − (m2 + µ)2 + iµΓ

.

Here D̃0
F (p) is the free propagator, and we have dropped the irrelevant iε. We see

that the propagator has acquired a width, in addition to the renormalization of the
mass, m2 → m2

R + µ2.

e) If Γ → 0, the imaginary part of the φ-loop will just contribute a factor −πδ(p2 −
µ2), which means that it behaves precisely like an on-shell, stable, particle of mass
µ. From the energy-time uncertainty relation, if the energy is sharp, the life-time
is infinite. Increasing Γ means that the energy uncertainty of the virtual state
increases, hence that the lifetime decreases. [This hand-waving argument can be
made mathematically precise, showing that Γ = 1

τ
, where τ is the expected life-

time of the state.]

Problem 18:

a) In lecture note 9, eq. (9.2), we found the retarded Green’s function as:

DR(x− y) = θ(x0 − y0)〈0|[φ0(x), φ0(y)]| 0〉 = i
∫ d4k

(2π)4
1

k2 −m2 e
−ik(x−y) .

In the following we shall only need the case x0 > y0, in which case the k0 integration
can be easily carried out by contour integration. Since for the retarded propagator
both poles are in the lower k0 plane, at k0 = ±(ωk − iε), which is were we have to
close the integration contour for x0 > y0, we find:

DR(x− y) =
∫ d3k

(2π)3
1

2ωk

(
e−ik(x−y) − eik(x−y)

)
(x0 > y0) ,

where kµ = [ωk,k], and we have changed integration variable k→ −k in the second
integral.

Since iDF (y − x) is Green’s function for the Klein–Gordon operator, we can write
the solution of:

( +m2)φ(x) = j(x)
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as:
φ(x) = φ0(x) + i

∫
d4y DR(x− y)j(y) .

Furthermore, since j(y) = 0 for y0 > T , we can use the formula we have found for
DR(x− y) for all times x0 later than T . Hence:

φ(x) = φ0(x) + i
∫

d4y

∫ d3k
(2π)3

1
2ωk

(
e−ik(x−y) − eik(x−y)

)
j(y) .

But the y-integral here then only yields ̃(k) and ̃∗(k) in the two terms, with k0 = ωk.
Collecting terms, we recover the expression given. We see that the field is a coherent
sum of a quantum fields, involving ak and a†k, and a classical field, involving ̃(k). [In
the samme manner, one can calculate the coherent response of a system containting
electrons, i.e. an atom, to an external electromagnetic field, like a light beam. This
describes the interplay between spontaneous decay, which is a quantum process, and
excitation/ionization induced by the classical field. This is essential for the theory
of lasers.]

b) We can simply observe that φ(x) can be expressed in terms of the operators:

bk = ak + i ̃(k)
√
2ωk

, b†k = a†k −
i ̃∗(k)
√
2ωk

,

which satisfy the same commutation relations as ak, a
†
k. Hence one find the Hamil-

tonian density expressed in terms of the bk’s in precisely the same manner as one
find it for the free theory expressed in terms of the ak’s, the result being the for-
mulas stated in the problem. It is straightforward to verify that φ(x) satisfy the
Heisenberg equation of motion.

c) The vacuum of the free theory is a solution of ak| 0 〉 = 0, We therefore find:

〈0|H| 0〉 =
∫

d3k1
2 |̃(k)|

2

〈0|N | 0〉 =
∫

d3k 1
2ωk
|̃(k)|2 .

Thus we can interpret |̃(k)|2/2ωk as the momentum space density of created parti-
cles. If j(x) is time independent for −T ≤ x0 < T , we find:

̃(k) =
∫

d3x e−ik·xj(x)
∫ T

−T
dx0 eiωkx0

= 2
ωk

sin(ωkT ) ̃(k) .

We see that for short ωkT we have 2 sinωkT
ωk

→ 2T , so initially the field strenght
increases proportionally with time, but for larger ωkT the created modes start to
interfere.
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