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Problem 12:

a) The decay rate for a muon at rest is given by eq. (5.24):

dΓ = 1
2m |Mfi|2dΠLIPS ,

where m is the muon mass. Before we continue, we observe that the matrix element:

|Mfi|2 = 32G2
F (m2 − 2mE)mE ,

obviously makes sense only for E ≤ m/2, which is actuallythe maximal energy
allowed for the electron. From energy-momentum conservation it can be seen that
the three massless particles all have a maximum possible energy of m/2.

If we neglect the masses of the decay products, the differential Lorentz-invariant
phase space for three-body final state is (E = Ee is the electron energy) is, from eq.
(5.21):

dΠLIPS = (2π)4δ4(pµ − pe − pν − pν̄)
1

(2π)9
d3 pe
2E

d3pν
2Eν

d3pν̄
2Eν̄

.

Here the subscripts ν and ν̄ refers to the muon neutrino and the electron an-
tineutrino, respectively. We use momentum delta-function to integrate over pν̄ ,
so pν̄ = −pe − pν (remember pµ = 0). We then have Eν̄ = |Ep̂e + Eν p̂ν | since
pν = Eν p̂ν etc for massless particles. Thus:

Γ = G2
F

16π5

∫
E dE d2p̂eEν dEν d2p̂ν

1
Eν̄

δ(m− E − Eν − Eν̄)E(m2 − 2mE) ,

If we measure the direction of the muon neutrino from that of the electron, we have
E2
ν̄ = E2 +E2

ν + 2EEν cos θ, where θ is the angle between pe and pν . We can then
perform the angular integrations as follows:∫

d2p̂e d2p̂ν
δ(m− E − Eν − Eν̄)

Eν̄
=
∫

d2p̂e sin θdθ dφδ(m− E − Eν − Eν̄)
Eν̄

= 8π2
∫ 1

2m

0
dEν̄

d cos θ
dEν̄

δ(m− E − Eν − Eν̄)
Eν̄

= 8π2
∫ 1

2m

0
dEν̄

δ(m− E − Eν − Eν̄)
EEν

= 8π2

EEν
θ(E + Eν − 1

2m) ,
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since we must have 0 ≤ Eν̄ = m− E − Eν ≤ 1
2m. The remaining integrals can now

easily be done, yielding:

Γ = G2
F

2π3

∫ 1
2m

0
E dE(m2 − 2mE)

∫ 1
2m−E

0
dEν

= G2
Fm

2π3

∫ 1
2m

0
dE E(m2 − 2mE)( 1

2m− E) = G2
Fm

5

192π3

b) We see that τ = 1/Γ has energy-dimension 4− 5 = −1, which is correct for a time.
If we insert the constants given, we find:

τ = 1
Γ

= 192π3

G2
Fm

5 = 3.26 · 1015MeV−1 .

To convert this to a more useful form, we multiply by h̄ = 6.58MeV·s, yielding
τ = 2.14µs. The discrepancy, 2.7%, is too large to be a measurement error, and is
probably mostly due to the neglection of the electron mass and deficiencies in the
Fermi theory for weak interactions.

Problem 13:

a) The electromagnetic Lagrangian density is

L = −1
4FµνF

µν = 1
4 (∂µAν − ∂νAµ) (∂µAν − ∂ν∂µ)

= 1
2

[
(∂µAν)2 − (∂µAν) (∂νAµ)

]
= 1

2
(
E2 −B2) .

From Schwartz, eq. (3.35), we then find the energy-momentum tensor, using the
results of sect. 3.4:

T µν = ∂L
∂∂µAλ

∂νAλ − gµνL = −
(
∂µAλ − ∂λAµ

)
∂νAλ − gµνL

− Fµλ∂νAλ +
1
4g

µνFαβF
αβ .

We evidently have T µν − T νµ 6= 0.

b) With
Ei = −∂tAi − ∂iA0 Bi = εijk∂jAk ,

we find by direct substitution:

T 00 = 1
2
(
E2 + B2)+∇ ·

(
A0E

)
,

T 0i = (E×B)i +∇ ·
(
AiE

)
.

c) From the antisymmetry of Kλµν we find:

∂µ∂λK
λµν = −∂λ∂µKµλν = −∂µ∂λKλµν = 0 ,

2



so
∂µT̃ µν = ∂µT µν + ∂µ∂λK

λµν = ∂µT µν = 0 .

d) With the suggested Kλµν we have, using the Maxwell-equations ∂µFµν = 0:

T̃ µν = −Fµλ∂νAλ − gµνL − ∂λ
(
FλµAν

)
= FµλF ν

λ + 1
4g

µνFαβF
αβ .

This expression is manifestly symmetric in µ and ν. The total energy and momentum
are unchanged:

P̂µ =
∫

d3x T̂ 0µ =
∫

d3x T 0µ +
∫

d3x ∂νKν0µ = Pµ +
∫

d3x ∂iKi0µ = Pµ .

where we first have used that K00µ = 0 by the antisymmetry in the first pair
of indices, and the divergence theorem to convert the last integral into a surface
integral at infinity, which vanishes by the standard assumption about the asymptotic
behavior of the fields.

e) By direct substitution, we find:

T̃ 00 = 1
2
(
E2 + B2) , T̃ 0i = (E×B)i .

These are the standard expression for the electromagnetic energy density and the
Poynting-vector for the momentum density.

Problem 6: See suggested solutions for 10.02 2017.
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