UNIVERSITETET I STAVANGER

Institutt for matematikk og naturvitenskap

FYS 610 Many-particle quantum mechanics

Exercises for 24 February 2017

PROBLEM 12: Schwartz, problem 5.3.

PROBLEM 13:

- a) Find the energy-momentum tensor, $\mathcal{T}^{\mu\nu}$, from Noether's theorem for the free electromagnetic field. Is this $\mathcal{T}^{\mu\nu}$ symmetric in μ and ν ?
- b) Write out the energy density, $\mathcal{E} = \mathcal{T}^{00}$, and the momentum density, $\pi^i = \mathcal{T}^{0i}$, in terms of the electric and magnetic fields, **E** and **B**.
- c) For any conserved energy-momentum tensor, $\mathcal{T}^{\mu\nu}$ with $\partial_{\mu}\mathcal{T}^{\mu\nu}=0$, we can define another tensor by:

$$\widetilde{\mathcal{T}}^{\mu\nu} = \mathcal{T}^{\mu\nu} + \partial_{\lambda} K^{\lambda\mu\nu} \,,$$

where $K^{\lambda\mu\nu} = -K^{\mu\lambda\nu}$, but otherwise arbitrary. Show that we also have $\partial_{\mu}\widetilde{\mathcal{T}}^{\mu\nu} = 0$.

d) Show that if one chooses:

$$K^{\lambda\mu\nu} = -F^{\lambda\mu}A^{\nu} \,,$$

the resulting $\tilde{\mathcal{T}}^{\mu\nu}$ is symmetric in μ and ν . Also show that the total energy and momentum found from $\tilde{\mathcal{T}}^{\mu\nu}$ and $\mathcal{T}^{\mu\nu}$ are the same.

e) Write out the modified energy and momentum densities based on $\widetilde{\mathcal{T}}^{\mu\nu}$. Do you recognize the results?

[This is roughly a corrected version of Problem 9, Schwartz, Problem 3.3.]

PROBLEM 6: Once more. See problems for 10.02 2017.