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Suggested solutions, exercises for 17 February 2017

Problem 6: See Suggested solutions for 10.02 2017.

Problem 8: See Suggested solutions for 10.02 2017.

Problem 10:

a) Making a partial integration, the lagrangian density can be rewritten:

L = 1
2(∂µφ)

2 + 1
2m

2φ2 − λ

4!φ
4 = 1

2 φ̇
2 − 1

2(∇φ)2 + 1
2m

2φ2 − λ

4!φ
4 ,

which leads to the Euler-lagrange equation:

∂µ
∂L
∂∂µφ

− ∂L
∂φ

= φ−m2φ+ λ

6φ
3 = 0 .

The constant solutions, φ = c, follow as:

λ

6 c
3 −m2c = 0 =⇒ c0 = 0 , c+ =

√
6m2

λ
, c− = −

√
6m2

λ
.

The energy density is equal to the Hamiltonian density:

H = ∂L

∂φ̇
φ̇− L = 1

2 φ̇
2 + 1

2(∇φ)2 − 1
2m

2φ2 + λ

4!φ
4 ,

which for the three constant solutions found yields the energy densities:

E = T 00 = H = −m
2c2

2 + λc4

24 = 0,−3
2
m4

λ
,−3

2
m4

λ
.

Thus we see that c± = ±
√
6m2/λ both yields minima, which are even global minima,

i.e. they both yield the ground state energy density of the system, since the non-
constant terms in H are positive. On the other hand, c0 = 0 is a local point of
inflection of the full H, because we can decrease H by adding small constant values
to φ = c0, but increase it by adding space- or time-dependent values.

b) Under the symmetry transformation φ→ −φ we see that c+ ↔ c−, so neither state
is invariant.
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c) Let c = c+ for definiteness. Since it is constant, we have ∂µπ = ∂µφ, so the
Lagrangian density expressed in terms of π reads,

L = 1
2 π̇

2 − 1
2(∇π)2 + 1

2m
2(π + c)2 − λ

4! (π + c)4

= 1
2 π̇

2 − 1
2(∇π)2 + 1

2m
2π2 − λc

4 π
3 − λ

4!π
4 + 3

2
m4

λ
.

where we have substituted the value of c2. The equation of motions now become:

= π + 2m2π + 3λc
4 π2 + λ

6π
3 = 0 ,

which indeed has a solution π = 0. The transformation φ→ −φ corresponds to the
combined transformation (π, c) → (−π,−c), which is a symmetry of L. [We can
also read off from L that after quantization π gives rise to a particle of positive rest
mass

√
2m.]

Problem 11:

a) We find the Euler-Lagrange equations as in Schwartz sec. 3.4, with an additional
term in L:

∂µF
µν +m2Aµ = Jν .

Since Fµν = −F νµ, we have ∂µ∂νFµν = −∂ν∂µF νµ = 0 (this is also seen by an
explicit calculation), we find if Jµ is conserved (∂µJµ = 0):

0 = ∂µ∂νF
µν = ∂νJ

ν −m2∂νA
ν = m2∂νA

ν =⇒ ∂νA
ν = 0 ,

so Aµ satisfies the Lorentz condition.

b) Like in Schwartz sec. 3.4, the Lorentz condition implies:

∂µF
µν = ∂µ∂

µAν − ∂µ∂νAµ = Aν

so the equations of motion can be written as four linear partial differential equations:

Aµ +m2Aµ = Jµ .

In the present case we shall find the static potential from a point charge at the
origin, like in Schwartz sec. 3.4.2, so Aµ = (ρ,0, with ρ = eδ3(x). Hence A = 0,
while A0 is a solution of: (

−∇2 +m2)A0(x) = eδ3(x)

Taking Fourier transforms, this becomes:

(k2 +m2)Ã0(k) = e =⇒ A0(k) = e

k2 +m2 ,

where k = |k|. Transforming back, we find by introducing spherical coordinates,
like in Schwartz eq. (3.62):

A0(x) = e

∫ d3k
(2π)3

eikx

k2 +m2 = e

4π2 2π
∫ ∞
0

k2 dk
k2 +m2

eikr − e−ikr

ikr

= e

4π2ri

∫ ∞
−∞

k dk
k2 +m2 e

ikr .
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c) This integral can be evaluated by contour integration (or be looked up in an integral
table). Since r > 0, we must close the contour in the upper half plane. Since

k

k2 +m2 = k

(k + im)(k − im) ,

we see that there is only one pole, at k = im, in this plane, with residue:

Resk=im = im
2ime−mr = 1

2e
−mr .

(this is the same as in Schwartz, except δ → m, which remains finite). Hence we
have:

A0(x) = e

4π2ri 2πi Resk=im = e

4π
e−mr

r

d) This follows trivially, since limm→0 e
−mr = 1.

e) Introducing standard units, the Yukawa potential is:

A0(r) = e

4πε0
e−cmr/h̄

r
= e

4πε0
e−r/rs

r
.

Here rs = h̄/mc is a screening length, while 2πrs is called the Compton wavelength.
For distances r � rs, the Yukawa and the Coulomb potentials are the same, but for
r � rs the former vanishes, so it only has a finite range. It was introduced to describe
the short range of nuclear forces, so rs was thought to be the range of the strong
nuclear force, around 10−15m. Yukawa predicted that there should exist particles,
now identified with the pion, with a corresponding rest energy mc2 = h̄c/rs ≈
200MeV. Indeed, the pion mass is 139.5MeV. This screened potential had actually
been introduced in physics earlier by Peter Debye, to describe electric screening in
plasmas and electrolytes, for which it is still in wide use.

e) We can rewrite the free, massless part of L, interchanging indices µ↔ ν and making
further index gymnastics necessary to identify equal terms:

L0 = 1
4F

µνFµν = 1
4(∂

µAν − ∂νAµ)(∂µAν − ∂νAµ)

= 1
2

(
(∂µAν)2 − (∂νAµ)(∂µAν)

)
= 1

2

(
(∂µAν)2 − ∂ν [Aµ(∂µAν)] +Aµ∂µ∂

νAν

)
= 1

2

(
(∂µAν)2 − ∂ν [Aµ(∂µAν)] + ∂µ[Aµ∂νAν ]− (∂µAµ)(∂νAν)

)
= L′0 + ∂µX

µ .

Here
L′0 = 1

2

(
(∂µAν)2 − (∂µAµ)(∂νAν)

)
only differs from L0 by a the total derivative ∂µXµ, with Xµ = Aµ∂νAν −Aν∂µAν ,
and so gives rise to the same equations of motion. If we plug ∂µAµ = 0 into L′0,
we simply have L′0 = 1

2 (∂
µAν)2, which also has Euler-Lagrange equation Aµ = 0.

Thus the equations of motion are unchanged when the constraint is included from
the start. It is the term 1

2m
2A2

µ in the original Lagrangian which enforces it, but,
of course, without it we have a theory that differs in more respect than just the
absence of the constraint.
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