UNIVERSITETET I STAVANGER

INSTITUTT FOR MATEMATIKK OG NATURVITENSKAP

FYS 610 Many-particle quantum mechanics

Exercises for 10 February 2017

PROBLEM 5: Consider an infinite one-dimensional chain of point particles, all of mass m, connected by identical elastic springs of length a and spring constant k. Assume that the motion takes place along the string, so you can disregard the transverse directions. Let $\eta_i(t)$ be the displacement of particle i from its equilibrium position at time t. [See Goldstein ch. 13.1 for hints].

a) Show that the Lagrangian of the system can be written:

$$L = \frac{1}{2} \sum_{i} \left[m \dot{\eta}_{i}^{2} - k (\eta_{i+1} - \eta_{i})^{2} \right].$$

b) Find the Euler-Lagrange equations, and show that they can be written:

$$\frac{m}{a}\ddot{\eta}_i - ka \left[\frac{\eta_{i+1} - \eta_i}{a^2} - \frac{\eta_i - \eta_{i-1}}{a^2} \right] = 0.$$

We shall now take the continuum limit of this model, letting $a \to 0$ in such a manner that the mass density, $\mu = m/a$, and Young's module Y = ka remain finite. [The correctness of the expression for Y may be checked by dimensional analysis].

c) Let $\eta(x,t)$ be the displacement of the piece of string which is at position x in equilibrium. Show that the equation of motion for the string becomes the wave equation:

$$\mu \frac{\partial^2 \eta}{\partial t^2} - Y \frac{\partial^2 \eta}{\partial x^2} = 0 \,,$$

Verify that this equation has longitudinal wave solutions of the form $\eta(x,t) = \eta_0 \cos(x \pm vt + \delta)$, with $v^2 = Y/\mu$.

d) Show that the continuum limit of the Lagrangian in a) can be written:

$$L = \int dx \, \mathcal{L} \qquad \mathcal{L} = \frac{1}{2} \left[\mu \left(\frac{\partial \eta}{\partial t} \right)^2 - Y \left(\frac{\partial \eta}{\partial x} \right)^2 \right] .$$

Further, show that the resulting Euler-Lagrange equation is the one found in the previous part.

PROBLEM 6: Find the components of the (two-dimensional) energy-momentum tensor of the Lagrangian in problem 5d) above. Also find the corresponding conserved quantities.

For later reference, we give the general formula for the conserved Noether current. If $\phi^n(x) \to \phi^n(x) + \delta \phi^n$ and $x^\mu \to x^\mu + \delta x^\mu$ is an infinitesimal symmetry transformation for the action $S = \int \mathrm{d}x \mathcal{L}(\{\phi^n, \partial_\mu \phi^n\}, t)$, then the conserved current is:

$$J^{\mu} = \sum_{n} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{n}} \delta \phi^{n} - \mathcal{T}^{\mu}_{\nu} \delta x^{\nu} ,$$

where the energy momentum tensor, $\mathcal{T}^{\mu\nu}$ is defined by:

$$\mathcal{T}^{\mu\nu} = \sum_{n} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{n}} \partial^{\nu} \phi^{n} - g^{\mu\nu} \mathcal{L}.$$

PROBLEM 7:

- a) Show that the actions of free massless scalar and vector fields, including electromagnetism, are invariant under the scale transformation $x^{\mu} \to ax^{\mu}$, $\phi^n \to \phi/a$.
- b) Find the conserved current following from this transformation, expressed in terms of $\mathcal{T}^{\mu\nu}$.

PROBLEM 8. An infinitesimal Lorentz transformation may be written $y^{\mu} = x^{\mu} + \delta x^{\mu}$ where $\delta x^{\mu} = \omega^{\mu\nu} x_{\nu}$, with an antisymmetric tensor, $\omega^{\mu\nu} = -\omega^{\nu\mu}$. Show that this ensures $y_{\mu}y^{\mu} = x_{\mu}x^{\mu}$, and use it to solve problem 3.2 in *Schwartz*.

[Problem 9: Schwartz, problem 3.3. We drop this. There is something fishy here]