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PROBLEM 1:

The unitary matrix connecting the two bases has matrix elements defined by:
= Ujile;)
J

(note the order of the indices on U!). But from the expansion of the unit operator in
the unprimed basis we also have:

lei) =T]e}) =z|€j><€j|€§>

Since the expansion coefficients of a vector in any basis are unique, we read off Uj; =
(ejles) = (ei]e;)*. Similarly, by interchanging the two bases we have

|ei>:ZUﬁl]e Z\e (eflei)
J
SO Uﬂl = (e}lei) = (eile))* = U} = UJTZ For any matrix A we then have

Al = (ej]Alef) = Z( ilex) (er] Al er)(erle]) Z kAklUlJ )

kl
which expresses the matrix equation A’ = UTAU. [Note that this relates just the matrix

elements of A in two different bases (a passive transformation). Whether or not the
corresponding active transformation is interesting is another issue.]

PROBLEM 2:

a) With f(k%) = ]0% — w? we find from the formula given:

/Oo dk0 §(k%° — w2)o(k°) = /Oo dk° (ﬁé(k ) + —— 5k + wk)) 0(k°)

2wk
1
2wk ’
since the factor §(k") ensures that the second term with k% = —w;, vanishes.



b) We know that for any Lorentz transformation, k'* = AXEY  proper or improper,
we have det A = +1, as is also evident from egs. (S 2.13-14). Thus the Jacobi
determinant of the transformation & — k' is 1, so:

Ok
det (61{:”’)

¢) Combining the two previous results, and assuming that we only consider Lorentz
transformations which preserve time ordering, so both k° and £’ have the same
sign, we find from the previous two parts:

d*k

= d*K’.
| det A

d*k =

d*k' = |det A d*K =

/dg_k _ /d4k5(k:02 ~W2)B(K) = /d4k5(k2 ).

2wk

The last integrand is clearly Lorentz invariant, so the first must also be.
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PrROBLEM 3: In this problem we use the fact that the rules of differentiations also
apply to operator expressions, as long as we handle commutation relations properly.
Note that [a, f(a)] = 0 for any operator a and function f not involving an operator not
commuting with a.

2)

b)

We find, using [a, al] = 1:

t

0. (e_zafaezaT) = e_zaT(—aTa + aaT)eZ“ — = [a, aT]emT =1.

From the previous part, we find by integration:

—zat t
e *"ae* =z+c,

where c is a constant of integration. Inserting z = 0 we see that ¢ = a. From this
and a|0) = 0 we find:

a|z) =ae® [0) = e (2 +a)|0) = 2e* |0) = 2| 2).

Thus | z) is an eigenstate of a with eigenvalue z.

From:
1 n
_ T
n)y=—a' |0
= 1
we have: i i
= L L — F
)= L 100 =2 J5lh).
Thus:

(nlz) = —=.

Vn!

The expectation values of p and ¢ in the coherent state z follows from the expressions
for p and ¢ in Lecture notes 4, with & = 1, by exploiting that | z) is an eigenvector
for a, and letting the creation operators operate to the left:

(elal 2) = \ 5 (el + 0Dl 2) = /5 (= + =) (2l2),

(2lpl 2) = T/ "ol — a)] 2 = 14/ T (e — ) ele)

Similarly, from [a,a!] = 1:

(z|a® + 2aTa + at? + 1] z)

1 2 1
(z]q2| z) = <z\a2 +aat +afa+al |z) = 5

2mw mw
1 2
= [+ 27 +1) (212,
2
(2|p?| 2) = —%<z|a2 —aa’ —a'a — aT2| z) = — nszw (z|a® — 2ata + at? - 1] z)
1 2
= —5— == =1] 212)



Thus

1 1
AP = —— [+ +1- (42| = —
g 2mw (z+27)"+ (z+27) 2mw
Ap2:%[—(2—2*)24—14‘(2—»2*)2] -
2 2
Hence: .
AgAp = —
qap 97

which is indeed the lowest value allowed by Heisenberg’s uncertainty relation.

Assume a' has an eigenvector |w ) with eigenvalue w:
allw) =w|w).

We can expand this state in the complete set {|n)}:

[w) = elk).
k

where the ¢;’s are the expansion coefficients. Inserting this in the eigenvalue equa-

tion, and using the defining properties of af, we find:

al|w) :cha”lﬂ :ch\/k+1]k+1>
k=0 k=0

=w|w) :chk|k> :wco|0>—|—chk|k> :wc0|0>—|—chk+1|k+1>.

Now a fundamental property of linear vector spaces is that the components of a
vector are unique in any basis. Therefore, if w = 0, this immediately yields ¢ = 0
for all k, so |w ) vanishes. If w # 0, we still must have ¢y = 0. The other coefficients

must satisfy a recursion relation which is easily solved:

VE+1 VE!

Cr — ck:—k'CO:O.
w w

Ck+1 =

Hence |w ) does not exist.

PROBLEM 4:

Assume that the resolution of the identity has the form:

d3k
= k)(k|.
Ik
Applying this to the orthonormality condition for the basis vectors themselves, we
find:
PIP) = [ S I D) = NING) [ 550~ 1030k~ )
N(p)* :
J— p .
(")

Hence M (k) = N (k).



b) Since a rescaling of the operators will not change the fact that the commutator is a
just a number, we can evaluate it in the vacuum state:

A3k
(0l[ap, al]| 0) = N ((Olap| k) (k|al,| 0) — (0]al,| k) (k|ap| 0))
[ &k . .
= | v (f(")" F(p)(P'|k)(k|p) — 0)
43k

~ ] N(k) F@) F)NE)N@p)s(p' —k)é(k - p)

= |f(p)>N(p)s(p' — p),

50 [aps, ah] = G(p)3(p’ — p) with G(p) = |f(p)|>N (p).



