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Problem 1:

The unitary matrix connecting the two bases has matrix elements defined by:

| e′i 〉 =
∑
j

Uji| ej 〉 ,

(note the order of the indices on U !). But from the expansion of the unit operator in
the unprimed basis we also have:

| e′i 〉 = I| e′i 〉 =
∑
j

| ej 〉〈ej |e′i〉 .

Since the expansion coefficients of a vector in any basis are unique, we read off Uji =
〈ej |e′i〉 = 〈e′i|ej〉∗. Similarly, by interchanging the two bases we have

| ei 〉 =
∑
j

U−1
ji | e

′
j 〉 =

∑
j

| e′j 〉〈e′j |ei〉 ,

so U−1
ji = 〈e′j |ei〉 = 〈ei|e′j〉∗ = U∗ij = U†ji. For any matrix A we then have

A′ij = 〈e′i|A| e′j〉 =
∑
kl

〈e′i|ek〉〈ek|A| el〉〈el|e′j〉 =
∑
kl

U†ikAklUlj ,

which expresses the matrix equation A′ = U†AU . [Note that this relates just the matrix
elements of A in two different bases (a passive transformation). Whether or not the
corresponding active transformation is interesting is another issue.]

Problem 2:

a) With f(k0) = k02 − ω2
k we find from the formula given:∫ ∞

∞
dk0 δ(k02

− ω2
k)θ(k0) =

∫ ∞
∞

dk0
(

1
2ωk

δ(k0 − ωk) +
1

2ωk
δ(k0 + ωk)

)
θ(k0)

= 1
2ωk

,

since the factor θ(k0) ensures that the second term with k0 = −ωk vanishes.
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b) We know that for any Lorentz transformation, k′µ = Λµνk
ν , proper or improper,

we have detΛ = ±1, as is also evident from eqs. (S 2.13-14). Thus the Jacobi
determinant of the transformation k → k′ is 1, so:

d4k =
∣∣∣∣det( ∂kµ∂k′ν

)∣∣∣∣ d4k′ =
∣∣detΛ−1∣∣ d4k′ = d4k′

|detΛ| = d4k′.

c) Combining the two previous results, and assuming that we only consider Lorentz
transformations which preserve time ordering, so both k0 and k′0 have the same
sign, we find from the previous two parts:∫ d3k

2ωk
=
∫

d4k δ(k02
− ω2

k)θ(k0) =
∫

d4k δ(k2 −m2)θ(k0) .

The last integrand is clearly Lorentz invariant, so the first must also be.
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Problem 3: In this problem we use the fact that the rules of differentiations also
apply to operator expressions, as long as we handle commutation relations properly.
Note that [a, f(a)] = 0 for any operator a and function f not involving an operator not
commuting with a.

a) We find, using [a, a†] = 1:

∂z

(
e−za

†
aeza

†
)
= e−za

†
(−a†a+ aa†)eza

†
= e−za

†
[a, a†]eza

†
= 1.

b) From the previous part, we find by integration:

e−za
†
aeza

†
= z + c ,

where c is a constant of integration. Inserting z = 0 we see that c = a. From this
and a| 0 〉 = 0 we find:

a | z 〉 = aeza
†
| 0 〉 = eza

†
(z + a)| 0 〉 = zeza

†
| 0 〉 = z| z 〉 .

Thus | z 〉 is an eigenstate of a with eigenvalue z.

c) From:

|n 〉 = 1√
n!
a†
n| 0 〉

we have:
| z 〉 =

∑
k

zk

k! a
†k| 0 〉 =

∑
k

zk√
k!
| k 〉 .

Thus:
〈n|z〉 = zn√

n!
.

d) The expectation values of p and q in the coherent state z follows from the expressions
for p and q in Lecture notes 4, with h̄ = 1, by exploiting that | z 〉 is an eigenvector
for a, and letting the creation operators operate to the left:

〈z|q| z〉 =
√

1
2mω 〈z|(a+ a†)| z〉 =

√
1

2mω (z + z∗)〈z|z〉 ,

〈z|p| z〉 = 1
i

√
mω

2 〈z|(a− a
†)| z〉 = 1

i

√
mω

2 (z − z∗)〈z|z〉 .

Similarly, from [a, a†] = 1:

〈z|q2| z〉 = 1
2mω 〈z|a

2 + aa† + a†a+ a†
2| z〉 = 1

2mω 〈z|a
2 + 2a†a+ a†

2 + 1| z〉

= 1
2mω

[
(z + z∗)2 + 1

]
〈z|z〉 ,

〈z|p2| z〉 = −mω2 〈z|a
2 − aa† − a†a− a†2| z〉 = −2mω

2 〈z|a2 − 2a†a+ a†
2 − 1| z〉

= − 1
2mω

[
(z − z∗)2 − 1

]
〈z|z〉 .
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Thus
∆q2 = 1

2mω

[
(z + z∗)2 + 1− (z + z∗)2

]
= 1

2mω ,

∆p2 = mω

2

[
−(z − z∗)2 + 1 + (z − z∗)2

]
= mω

2 .

Hence:
∆q∆p = 1

2 ,

which is indeed the lowest value allowed by Heisenberg’s uncertainty relation.

e) Assume a† has an eigenvector |w 〉 with eigenvalue w:

a†|w 〉 = w|w 〉 .

We can expand this state in the complete set {|n 〉}:

|w 〉 =
∑
k

ck| k 〉 .

where the ck’s are the expansion coefficients. Inserting this in the eigenvalue equa-
tion, and using the defining properties of a†, we find:

a†|w 〉 =
∑
k=0

cka
†| k 〉 =

∑
k=0

ck
√
k + 1| k + 1 〉

= w|w 〉 = w
∑
k=0

ck| k 〉 = wc0| 0 〉+ w
∑
k=1

ck| k 〉 = wc0| 0 〉+ w
∑
k=0

ck+1| k + 1 〉 .

Now a fundamental property of linear vector spaces is that the components of a
vector are unique in any basis. Therefore, if w = 0, this immediately yields ck = 0
for all k, so |w 〉 vanishes. If w 6= 0, we still must have c0 = 0. The other coefficients
must satisfy a recursion relation which is easily solved:

ck+1 =
√
k + 1
w

ck , ⇐⇒ ck =
√
k!
wk

c0 = 0 .

Hence |w 〉 does not exist.

Problem 4:

a) Assume that the resolution of the identity has the form:

I =
∫ d3k
M(k) |k 〉〈k| .

Applying this to the orthonormality condition for the basis vectors themselves, we
find:

〈p|p′〉 =
∫ d3k
M(k) 〈p|k〉〈k|p

′〉 = N(p)N(p′)
∫ d3k
M(k)δ(p− k)δ(k− p′)

= N(p)2

M(p) δ(p− p′) .

Hence M(k) = N(k).
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b) Since a rescaling of the operators will not change the fact that the commutator is a
just a number, we can evaluate it in the vacuum state:

〈0|[ap′ , a†p]| 0〉 =
∫ d3k
N(k)

(
〈0|ap′ |k〉〈k|a†p| 0〉 − 〈0|a†p|k〉〈k|ap| 0〉

)
=
∫ d3k
N(k)

(
f(p′)∗f(p)〈p′|k〉〈k|p〉 − 0

)
=
∫ d3k
N(k)f(p

′)∗f(p)N(p′)N(p)δ(p′ − k)δ(k− p)

= |f(p)|2N(p)δ(p′ − p) ,

so [ap′ , a†p] = G(p)δ(p′ − p) with G(p) = |f(p)|2N(p).
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