UNIVERSITETET I STAVANGER

INSTITUTT FOR MATEMATIKK OG NATURVITENSKAP

FYS 610 Many-particle quantum mechanics

Suggested solutions, exercises for 27 January 2017

PROBLEM 1:

The unitary matrix connecting the two bases has matrix elements defined by:

$$|e_i'\rangle = \sum_j U_{ji} |e_j\rangle,$$

(note the order of the indices on U!). But from the expansion of the unit operator in the unprimed basis we also have:

$$|e'_i\rangle = \mathbb{I}|e'_i\rangle = \sum_j |e_j\rangle\langle e_j|e'_i\rangle.$$

Since the expansion coefficients of a vector in any basis are unique, we read off $U_{ji} = \langle e_i | e_i' \rangle = \langle e_i' | e_j \rangle^*$. Similarly, by interchanging the two bases we have

$$|e_i\rangle = \sum_j U_{ji}^{-1} |e_j'\rangle = \sum_j |e_j'\rangle\langle e_j' |e_i\rangle,$$

so $U_{ji}^{-1} = \langle e'_j | e_i \rangle = \langle e_i | e'_j \rangle^* = U_{ij}^* = U_{ji}^{\dagger}$. For any matrix A we then have

$$A'_{ij} = \langle e'_i | A | e'_j \rangle = \sum_{kl} \langle e'_i | e_k \rangle \langle e_k | A | e_l \rangle \langle e_l | e'_j \rangle = \sum_{kl} U^{\dagger}_{ik} A_{kl} U_{lj} ,$$

which expresses the matrix equation $A' = U^{\dagger}AU$. [Note that this relates just the matrix elements of A in two different bases (a passive transformation). Whether or not the corresponding active transformation is interesting is another issue.]

PROBLEM 2:

a) With $f(k^0) = k^{0^2} - \omega_k^2$ we find from the formula given:

$$\int_{\infty}^{\infty} dk^0 \, \delta(k^{0^2} - \omega_k^2) \theta(k^0) = \int_{\infty}^{\infty} dk^0 \left(\frac{1}{2\omega_k} \delta(k^0 - \omega_k) + \frac{1}{2\omega_k} \delta(k^0 + \omega_k) \right) \theta(k^0)$$

$$= \frac{1}{2\omega_k},$$

since the factor $\theta(k^0)$ ensures that the second term with $k^0 = -\omega_k$ vanishes.

b) We know that for any Lorentz transformation, $k'^{\mu} = \Lambda^{\mu}_{\nu} k^{\nu}$, proper or improper, we have det $\Lambda = \pm 1$, as is also evident from eqs. (S 2.13-14). Thus the Jacobi determinant of the transformation $k \to k'$ is 1, so:

$$d^4k = \left| \det \left(\frac{\partial k^{\mu}}{\partial k'^{\nu}} \right) \right| d^4k' = \left| \det \Lambda^{-1} \right| d^4k' = \frac{d^4k'}{|\det \Lambda|} = d^4k'.$$

c) Combining the two previous results, and assuming that we only consider Lorentz transformations which preserve time ordering, so both k^0 and k'^0 have the same sign, we find from the previous two parts:

$$\int \frac{\mathrm{d}^3 \mathbf{k}}{2\omega_k} = \int \mathrm{d}^4 k \, \delta(k^{0^2} - \omega_k^2) \theta(k^0) = \int \mathrm{d}^4 k \, \delta(k^2 - m^2) \theta(k^0).$$

The last integrand is clearly Lorentz invariant, so the first must also be.

PROBLEM 2

a) With $f(k^0) = k^{0^2} - \omega_k^2$ we find from the formula given:

$$\int_{\infty}^{\infty} dk^0 \, \delta(k^{0^2} - \omega_k^2) \theta(k^0) = \int_{\infty}^{\infty} dk^0 \left(\frac{1}{2\omega_k} \delta(k^0 - \omega_k) + \frac{1}{2\omega_k} \delta(k^0 + \omega_k) \right) \theta(k^0)$$
$$= \frac{1}{2\omega_k},$$

since the factor $\theta(k^0)$ ensures that the second term with $k^0 = -\omega_k$ vanishes.

b) We know that for any Lorentz transformation, $k'^{\mu} = \Lambda^{\mu}_{\nu} k^{\nu}$, proper or improper, we have det $\Lambda = \pm 1$, as is also evident from eqs. (S 2.13-14). Thus the Jacobi determinant of the transformation $k \to k'$ is 1, so:

$$d^4k = \left| \det \left(\frac{\partial k^{\mu}}{\partial k'^{\nu}} \right) \right| d^4k' = \left| \det \Lambda^{-1} \right| d^4k' = \frac{d^4k'}{|\det \Lambda|} = d^4k'.$$

c) Combining the two previous results, and assuming that we only consider Lorentz transformations which preserve time ordering, so both k^0 and k'^0 have the same sign, we find from the previous two parts:

$$\int \frac{\mathrm{d}^3 \mathbf{k}}{2\omega_k} = \int \mathrm{d}^4 k \, \delta(k^{0^2} - \omega_k^2) \theta(k^0) = \int \mathrm{d}^4 k \, \delta(k^2 - m^2) \theta(k^0) \,.$$

The last integrand is clearly Lorentz invariant, so the first must also be.

PROBLEM 3: In this problem we use the fact that the rules of differentiations also apply to operator expressions, as long as we handle commutation relations properly. Note that [a, f(a)] = 0 for any operator a and function f not involving an operator not commuting with a.

a) We find, using $[a, a^{\dagger}] = 1$:

$$\partial_z \left(e^{-za^\dagger} a e^{za^\dagger} \right) = e^{-za^\dagger} (-a^\dagger a + aa^\dagger) e^{za^\dagger} = e^{-za^\dagger} [a, a^\dagger] e^{za^\dagger} = 1.$$

b) From the previous part, we find by integration:

$$e^{-za^{\dagger}}ae^{za^{\dagger}} = z + c,$$

where c is a constant of integration. Inserting z=0 we see that c=a. From this and $a|0\rangle=0$ we find:

$$a | z \rangle = ae^{za^{\dagger}} | 0 \rangle = e^{za^{\dagger}} (z+a) | 0 \rangle = ze^{za^{\dagger}} | 0 \rangle = z | z \rangle.$$

Thus $|z\rangle$ is an eigenstate of a with eigenvalue z.

c) From:

$$|n\rangle = \frac{1}{\sqrt{n!}} a^{\dagger n} |0\rangle$$

we have:

$$|z\rangle = \sum_{k} \frac{z^{k}}{k!} a^{\dagger k} |0\rangle = \sum_{k} \frac{z^{k}}{\sqrt{k!}} |k\rangle.$$

Thus:

$$\langle n|z\rangle = \frac{z^n}{\sqrt{n!}}$$
.

d) The expectation values of p and q in the coherent state z follows from the expressions for p and q in Lecture notes 4, with $\hbar = 1$, by exploiting that $|z\rangle$ is an eigenvector for a, and letting the creation operators operate to the left:

$$\begin{split} \langle z|q|\,z\rangle &= \sqrt{\frac{1}{2m\omega}} \langle z|(a+a^\dagger)|\,z\rangle = \sqrt{\frac{1}{2m\omega}} (z+z^*) \langle z|z\rangle\,,\\ \langle z|p|\,z\rangle &= \frac{1}{\mathrm{i}} \sqrt{\frac{m\omega}{2}} \langle z|(a-a^\dagger)|\,z\rangle = \frac{1}{\mathrm{i}} \sqrt{\frac{m\omega}{2}} (z-z^*) \langle z|z\rangle\,. \end{split}$$

Similarly, from $[a, a^{\dagger}] = 1$:

$$\begin{split} \langle z|q^2|\,z\rangle &= \frac{1}{2m\omega}\langle z|a^2 + aa^\dagger + a^\dagger a + a^{\dagger^2}|\,z\rangle = \frac{1}{2m\omega}\langle z|a^2 + 2a^\dagger a + a^{\dagger^2} + 1|\,z\rangle \\ &= \frac{1}{2m\omega}\left[\left(z + z^*\right)^2 + 1\right]\langle z|z\rangle\,, \\ \langle z|p^2|\,z\rangle &= -\frac{m\omega}{2}\langle z|a^2 - aa^\dagger - a^\dagger a - a^{\dagger^2}|\,z\rangle = -\frac{2m\omega}{2}\langle z|a^2 - 2a^\dagger a + a^{\dagger^2} - 1|\,z\rangle \\ &= -\frac{1}{2m\omega}\left[\left(z - z^*\right)^2 - 1\right]\langle z|z\rangle\,. \end{split}$$

Thus

$$\Delta q^2 = \frac{1}{2m\omega} \left[(z + z^*)^2 + 1 - (z + z^*)^2 \right] = \frac{1}{2m\omega} ,$$

$$\Delta p^2 = \frac{m\omega}{2} \left[-(z - z^*)^2 + 1 + (z - z^*)^2 \right] = \frac{m\omega}{2} .$$

Hence:

$$\Delta q \Delta p = \frac{1}{2} \,,$$

which is indeed the lowest value allowed by Heisenberg's uncertainty relation.

e) Assume a^{\dagger} has an eigenvector $|w\rangle$ with eigenvalue w:

$$a^{\dagger} | w \rangle = w | w \rangle$$
.

We can expand this state in the complete set $\{|n\rangle\}$:

$$|w\rangle = \sum_{k} c_k |k\rangle.$$

where the c_k 's are the expansion coefficients. Inserting this in the eigenvalue equation, and using the defining properties of a^{\dagger} , we find:

$$a^{\dagger} | w \rangle = \sum_{k=0}^{\infty} c_k a^{\dagger} | k \rangle = \sum_{k=0}^{\infty} c_k \sqrt{k+1} | k+1 \rangle$$

$$= w | w \rangle = w \sum_{k=0}^{\infty} c_k | k \rangle = w c_0 | 0 \rangle + w \sum_{k=1}^{\infty} c_k | k \rangle = w c_0 | 0 \rangle + w \sum_{k=0}^{\infty} c_{k+1} | k+1 \rangle.$$

Now a fundamental property of linear vector spaces is that the components of a vector are unique in any basis. Therefore, if w = 0, this immediately yields $c_k = 0$ for all k, so $|w\rangle$ vanishes. If $w \neq 0$, we still must have $c_0 = 0$. The other coefficients must satisfy a recursion relation which is easily solved:

$$c_{k+1} = \frac{\sqrt{k+1}}{w} c_k$$
, \iff $c_k = \frac{\sqrt{k!}}{w^k} c_0 = 0$.

Hence $|w\rangle$ does not exist.

PROBLEM 4:

a) Assume that the resolution of the identity has the form:

$$\mathbb{I} = \int \frac{\mathrm{d}^3 \mathbf{k}}{M(k)} |\mathbf{k}\rangle \langle \mathbf{k}|.$$

Applying this to the orthonormality condition for the basis vectors themselves, we find:

$$\langle \mathbf{p} | \mathbf{p}' \rangle = \int \frac{\mathrm{d}^3 \mathbf{k}}{M(k)} \langle \mathbf{p} | \mathbf{k} \rangle \langle \mathbf{k} | \mathbf{p}' \rangle = N(p) N(p') \int \frac{\mathrm{d}^3 \mathbf{k}}{M(k)} \delta(\mathbf{p} - \mathbf{k}) \delta(\mathbf{k} - \mathbf{p}')$$
$$= \frac{N(p)^2}{M(p)} \delta(\mathbf{p} - \mathbf{p}').$$

Hence M(k) = N(k).

b) Since a rescaling of the operators will not change the fact that the commutator is a just a number, we can evaluate it in the vacuum state:

$$\langle 0|[a_{\mathbf{p}'}, a_{\mathbf{p}}^{\dagger}]|0\rangle = \int \frac{\mathrm{d}^{3}\mathbf{k}}{N(k)} \left(\langle 0|a_{\mathbf{p}'}|\mathbf{k}\rangle\langle\mathbf{k}|a_{\mathbf{p}}^{\dagger}|0\rangle - \langle 0|a_{\mathbf{p}}^{\dagger}|\mathbf{k}\rangle\langle\mathbf{k}|a_{\mathbf{p}}|0\rangle\right)$$

$$= \int \frac{\mathrm{d}^{3}\mathbf{k}}{N(k)} \left(f(p')^{*}f(p)\langle\mathbf{p}'|\mathbf{k}\rangle\langle\mathbf{k}|\mathbf{p}\rangle - 0\right)$$

$$= \int \frac{\mathrm{d}^{3}\mathbf{k}}{N(k)} f(p')^{*}f(p)N(p')N(p)\delta(\mathbf{p}' - \mathbf{k})\delta(\mathbf{k} - \mathbf{p})$$

$$= |f(p)|^{2}N(p)\delta(\mathbf{p}' - \mathbf{p}),$$

so
$$[a_{\mathbf{p}'}, a_{\mathbf{p}}^{\dagger}] = G(p)\delta(\mathbf{p}' - \mathbf{p})$$
 with $G(p) = |f(p)|^2 N(p)$.