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The Schrodinger, Heisenberg and interaction pictures

In elementary non-relativistic quantum mechanics one is used to attack a problem by
solving the time dependent Schrodinger equation, which in the bra-ket formalism can
be written (we use a superscript S to distinguish the Schrodinger picture):
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where H is the Hamiltonian. Any solution of this equation can be written:

[9(t))° = Ult, to)|10)° (8.2)

where U (t,t,) is the time evolution operator and | (t) Vo = | 4o >S is the wavefunction
at t = ty. Inserting this into the time dependent Schrodinger equation, one finds that
U(t,to) also satisfies it:

i%U(t, to) = HU(t,t)),  Ulto,to) =1. (8.3)

We also must have, for arbitrary ¢ty and |(t) )S:
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Indeed, U is a unitary operator. This follows, because since H = H', the Hermitean
conjugate of eq. (8.3) is:

—i%UT(t,to) =U'(t,to))H,  Ulto,to) =1. (8.5)

Hence, with U = U(t, ty):
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Thus C = U'U is independent of ¢t. Evaluating it at ¢ = to one finds C = I. In the
same manner one finds UUT =1, so U is unitary or U~! = UT. If the Hamiltonian does
not depend explicitly on time, 0H /0t = 0, we find the unique solution of eq. (8.3) by
inspection:

Ult, to) = U(t — tg) = e HEt0)

We shall give an explicit formula for U(¢,t,) in the case of a time dependent H when
we have introduced the time ordering operator in ch. 6.1 of Schwartz.

In the Schrodinger formulation of quantum mechanics, we have that the important
operators, like x, or ¢, and p are time independent. But in classical mechanics, these
operators are time dependent. Indeed, solving a problem of classical mechanics normally
involves finding this dependence. Indeed, from the canonical quantization prescription
(see Note 1), we found that the quantum observable associated with a classical dynam-
ical variable A, including ¢ and p, satisfies Heisenberg’s equation of motion:
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Thus, A is generally time dependent. But H only changes with time if it contains an
explicit time dependence.

This issue is resolved by realizing that the Heisenberg equation of motion actually applies
to the operator in a different representation of vectors in the Hilbert space, called the
Heisenberg picture, which we shall designate with a superscript H. The two pictures
must, of course, be unitarily equivalent (see Problem 1 in the exercises). To avoid
confusion, we now introduce superscripts also for the operators. The time evolution of
any physical observable in the two systems will be the same, provided
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for any states |1),|¢) and operator A. Since the two pictures describe the same
physical system, at some fixed but arbitrary time, ty, we can adjust the phases of the
wavefunctions to make the two pictures agree:

[0)T = [0(t))* = UT(t, to)| (1)), (8.7)

for any | ). Afterwards, and even before, | 1(ty) ) evolves according to eq. (8.2), while
|4 )" remains unchanged, 9]¢ )" /ot = 0.

The physical interpretation requires that eq. (8.6) remains satisfied at all times. Taking
time derivatives, and using the Schréodinger equation and its Hermitean conjugate, we
find (U = U(t,to)):
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Since this is true for any states |¢) and | ¢ ), it is an operator identity, so:
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where we have exploited that unitary transformations preserve operator identities. This
is nothing but Heisenberg’s equation of motion for AX.

Finally, we introduce the interaction picture, which will be used to develop perturbation
theory and the Feynman diagrams. This picture is intermediate between the Heisenberg
and the Schrodinger pictures. We assume that the Hamiltonian can be split into two
parts, called the unperturbed Hamiltonian, Hy, and the interaction, Hy or V. We shall
follow Schwartz, and use the latter designation:

H=Hy+V.

We assume that we can solve the unperturbed problem, with V' = 0, exactly. In rel-
ativistic quantum field theory Hj is almost always taken to be the time independent
Hamiltonian for free fields, so that we can use our Fock-space construction as a con-
venient basis. If we start with the Schrodinger picture, the interaction picture wave-
function, which we might denote with a superscript I, but which Schwartz denotes by
a subscript 0, we define, similarly to eq. (8.7):
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At t = ty all three pictures coincide. The interaction picture time evolution operator
Uo(t,to) evolves according to (cf. eq. (8.3)):

0
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In the following we shall assume that Hj is time independent, in which case we have:
Uo(t, to) = Uo(t — t()) = e_iHO(t_tO) . (810)

From egs. (8.8) and (8.9) it immediately follows that |1 ), satisfies the Schrodinger
equation, with V' only as Hamiltonian:
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where
Vo(t,to) = UT(t, t0)V (£)U (t, o) (8.12)
is the interaction in the interaction picture. Here we have used [H, UJ ] = 0, which

follows immediately from eq. (8.12). Thus, if the interaction vanishes, the wavefunctions
are constant, and the interaction picture and the Heisenberg picture coincide. The
remaining time-evolution is taken care of by the operators, which satisfy the interaction
picture version of the Heisenberg equation:
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where Ay = Ug A3Uy. This is shown in the same manner as for the Heisenberg picture.



