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Second quantization of bosons

Since it is impossible in quantum mechanics to distinguish identical particles, there is
really no point of having a notation that keeps track of particle identities. We shall
only consider non-interacting particles, which suffices to give us a suitable basis for the
many-particle Hilbert space. This note is an extension of sec. 2.3 on Schwartz. Here,
and in the following notes, we shall use units such that h̄ = 1 and c = 1, see appendix
A.1 of Schwartz,

If we have N non-interacting bosons, all in the in the same one-particle state | i〉, we
can, of course, write the wavefunction as

ψi, i, . . . i︸ ︷︷ ︸
N

(r1, . . . rN ) =
N∏

k=1
ψi(rk) , (5.1)

where ψi(rj) = 〈rj |i〉 is a one-particle wavefunction, which is not too bad. But already
if we have n1 particles in state | i〉 and n2 = N − n1 in state | j〉, things start to get
unwieldy:

ψi, . . . i︸ ︷︷ ︸
n1

j . . . j︸ ︷︷ ︸
n2

(r1, . . . rN ) = 1(
N
n1

) [ n1∏
k=1

ψi(rk)
N∏

l=n1+1
ψj(rl) + (permutations)

]
, (5.2)

where
(
N
n1

)
= N !

n1!n2!
is the number ow ways one can split N particles into two groups

of sizes n1 and n2. The permutations are only those where we interchange particles
between the two groups.

By using the Dirac formalism with some further conventions, we obtain a much more
compact notation. To do that, we assume that the one-particle states are energy eigen-
states of a single-particle Hamiltonian, h:

h| i〉 = εi| i〉 . (5.3)

Furthermore, the notation can be simplified if we assume that the eigenstates of H
are discrete and ordered so that we can assume that i can be taken to be the natural
numbers, and that:

ε1 ≤ ε2 ≤ ε3 ≤ . . . . (5.4)

We then define the state:
|n1, n2, n3, . . . ni, . . .〉 (5.5)
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as the state with n1 bosons in state i = 1 etc. The symmetry condition id fulfilled per
definition. The state of lowest energy, the ground state or vacuum, is the state without
any particles at all:

| 0〉 = | 0, 0, . . .〉 . (5.6)

It would be physically reasonable if the energy of this state would be E0 = 0, but it will
turn out that this is not always automatically the case, so we shall keep it. Since the
particles are non-interacting, the energy of a state with n1 particle in the state i = 1,
n2 in that with i2 etc is evidently:

En1,n2,... = E0 + n1ε1 + n2ε2 + . . . , (5.7)

Obviously, E → ∞ if the number of particles,
∑

i ni → ∞, so states with infinitely
many particles are not physically realizable. Since he energy of any physical state is the
eigenvalue of the many-particle Hamiltonian, H, so we must have:

H |n1, n2, . . .〉 = En1,n2,...|n1, n2, . . .〉 . (5.8)

We can now use the construction of creation and annihilation operators from the end of
note 4, with one important difference: We introduce a separate pair of these operators
for each one-particle state | i〉. They have matrix elements in the many-particle basis
analogous to eq. (4.16a):

〈m1,m2, . . . mi, . . . |a†i |n1, n2, . . . ni, . . .〉 =
√
ni + 1 δm1,n1δm2,n2 . . . δmi,ni+1 . . . .

(4.16′a)
Thus this creation operator leaves all particles in states | j〉 6= | i〉 unchanged. This
definition leads to:

a†i |n1, n2, . . . ni, . . .〉

=
∑

m1,m2, ...

|m1,m2, . . . mi, . . .〉〈m1,m2, . . . mi, . . . |a†i |n1, n2, . . . ni, . . .〉

=
√
ni + 1 |n1, n2, . . . ni + 1, . . .〉 .

(4.16′b)
The matrix element of ai follows like before:

〈m1,m2, . . . mi, . . . |ai|n1, n2, . . . ni, . . .〉 =
√
ni δm1,n1δm2,n2 . . . δmi,ni−1 . . .

ai|n1, n2, . . . ni, . . .〉 =
√
ni |n1, n2, . . . ni − 1, . . .〉 .

(4.17′)

With Ni = a†iai (no sum over i) as the operator counting the number of particles in
state | i〉, one easily verifies:

Ni|n1, n2, . . . ni, . . .〉 = ni|n1, n2, . . . ni, . . .〉 (5.9)

and the algebra:

[ai, aj ] = 0 , [a†i , a
†
j ] = 0 , [ai, a†j ] = δi,j (5.10a)

[Ni, a
†
j ] = δi,j , a

†
i , [Ni, aj ] = −δi,j ai (5.10b)
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The total number of particles is evidently:

N =
∑
i

Ni =
∑
i

a†iai . (5.11)

so

N |n1, n2, . . .〉 =
(∑

i

ni

)
|n1, n2, . . .〉 . (5.12)

Similarly we see that we can write the energy operator, i.e. the Hamiltonian of a system
of non-interacting particles, as:

H =
∑
i

εiNi + E0 ,

H|n1, n2, . . .〉 =
(∑

i

εini

)
|n1, n2, . . .〉 = En1,n2, ...|n1, n2, . . .〉 .

(5.13)

The above construction, called the occupation number formalism for obvious reasons,
may look like a particular implementation of the bra-ket formalism for a many-particle
system. Indeed for non-interacting particles it is, since the particle number, N , is
conserved, [N,H] = 0, as one easily verifies. This remains true for interacting systems
with a fixed number of bosons, like a gas of helium atoms, with energies low enough
for ionization to be impossible. But for this purpose the basis we have constructed is
far too large, it suffices to restrict oneself to the subspace of a fixed N = n. The only
drawback of this is that the expression for H in this basis becomes a bit cumbersome:

H =
∑
n

Hn , Hn =
∑

i;
∑

j Nj=n

εiNi + Ei
0 , (5.14)

where E0 =
∑

iE
i
0. We note that ε1 < εi for all i > 1, then the state |n, 0, 0, . . .〉 is the

unique state of lowest energy. En,0,0,..., for n particles, i.e. the ground state in Hn.

Both in condensed matter physics and in quantum field theory, we are interested in
the cases where the number of particles, or more generally “pseudo-particles”, is not
conserved. The basis constructed above is perfectly suitable also for this purpose. But
it is a basis for a much larger Hilbert space, as it allows for the existence of an arbitrary
number of particles. Of course, unless ε0 = 0, a state with infinitely many particles
cannot be realized because it would have infinite energy, but there is no fixed upper
limit to the value of n. The basis we have constructed is the basis of the bosonic Fock
space, F , which is the direct sum of the Hilbert spaces of fixed numbers, n, of particles,
H\. This can be written (cf Schwartz, sec. 2.3).

F = ⊕nHn . (S 2.67)

This is just a way of expressing that any physical state can be described as a super-
position of states with a fixed number of particles. This formalism goes beyond that
of traditional non-relativistic quantum mechanics, where traditionally it was taken as
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a postulate that one cannot realize states which are superpositions of states with a dif-
ferent number of particles. This postulate is not obeyed by relativistic quantum fields,
and indeed, not even by excitations in non-relativistic many-body systems.

It remains to consider the case of states labelled by a continuous variable, like the
momentum eigenstates which are not only used as the standard basis in relativistic
quantum field theory, but also in non-relativistic scattering theory. If i → p, we have
for a free particle of mass m: ei → e(p) = p2/2m in the non-relativistic case and
ei → ω(p) =

√
p2 +m2 in the relativistic case. It is not quite obvious how to handle the

notation of eq. (5.4) in this case. The standard way of dealing with this is to introduce
a regularization. We imagine our initially infinite system placed in a cubical box of side
length L, so the volume is V = L3 (in 3 dimensions). To find the wavefunction of a free
boson in this volume, we have to define the boundary conditions. These depend on the
physical situation we want to describe.

Let us concentrate on the x-direction first. A free particle moving in the x direction has
a wavefunction

ψp(x) = 〈x|p〉 = Npe
ipx , (5.15)

both for non-relativistic and relativistic particles, where Np is a normalization factor.
If we take the box boundaries to be at x = 0 and x = L, and implement the boundary
conditions ψ(0) = ψ(L) = 0, no wavefunction of the form of eq. (5.15) satisfy these
condition. But since the Hamiltonian of a free particle is invariant under a parity
transformation, x↔ −x, a linear combination of such wavefunctions of the form

ψ(x) = ψp(x)− ψp(−x) = Ap sin(px) ,

where Ap is a normalization condition, does. The constants in this equation have been
chosen so that ψ(0) = 0 is fulfilled. In order also to have ψ(L) = 0, we must require the
quantization condition:

ψ(L) = Np sin(pL) = 0 ⇐⇒ p = nπ

L
, n an integer . (5.16)

But this is not a scattering solution, as can be seen in several ways. Thus if we calculate
the probability current from BJ eq. (2.50), we find:

jx = 1
2mi

(
ψ∗
∂ψ

∂x
− ∂ψ∗

∂x
ψ

)
= 0 ,

since ψ is real. Thus no particle leaves or enters the box. Indeed, we recognize this ψp as
the stationary wavefunction of a particle constrained to move within the box 0 ≤ x ≤ L.

To obtain a solution describing a particle moving with momentum p, we use a standard
trick. We imagine that our box is one of an infinite set of identical boxes, and that the
particle can move from box to box, but in such a manner that the boundary condition
that the value of the wavefunction on each boundary is the same. This condition is
called the periodic boundary condition, and reads in one dimension:

ψp(L) = ψp(0) ⇐⇒ p = 2πn
L

, n an integer . (5.17)

4



Thus we arrive at the same quantization condition, but the probability current density
becomes:

jx = p

m
|Np|2 ,

as expected. Thus eqs. (5.15) with the boundary condition (5.17) does indeed describe
a particle travelling through the box with momentum p. It remains to determine the
normalization constant Np. Since the values of p are discrete, one finds:, using the
quantization condition.

δp,p′ = 〈p′|p〉 =
∫ L

0
dxψ∗p′(x)ψp(x) = Np′Np

∫ Ł

0
dx ei(p−p

′)x =
{
|Np|2L, if p = p′ ;
0 p 6= p′ .

Thus one can chose Np = 1/
√
L. In 3 dimensions the normalized momentum eigenstates

are then:
ψp(x) = 〈x|p〉 =

1√
V
eip·r , (5.18)

both for non-relativistic and relativistic particles. This leads to the resolution of the
unit operator in the coordinate representation:

δ(r− r′) =
∑

p
〈r′|p〉〈p|r〉 = 1

V

∑
p
e−ip·(r−r′) . (5.18)

The sum over p here is the sum over the positive and negative integers nx, ny and nz
(not including 0), such that pi = 2πni/L. But in the continuum limit we have the
well-known integral representation of the δ-function:

δ(r− r′) = 1
(2π)3

∫ ∞
−∞

d3p e−ip·(r−r′) .

Thus, we find the transition between the discrete and continuous description is obtained
simply by the prescription:

1
V

∑
p

⇐⇒ 1
(2π)3

∫ ∞
−∞

d3p . (5.19)

We shall come back to the normalization conventions for the momentum eigenstates,
because it is convenient to do this differently for non-relativistic and relativistic theories.
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