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Physical interpretation of quantum theories

The basic assumption of any quantum theory is that there is a duality between a pure
(isolated) system, which can be completely characterized by a ket |ψ 〉 in the Hilbert
space, H, and a (complete and ideal) measurement, which can detect if the system
is in a state |ψ 〉, or not. Such an experiment only produces a probabilistic result, a
conditional probability that we observe the system to be in state |φ 〉 given that the
system was in state |ψ 〉:

P (φ|ψ) = |〈φ|ψ〉|2

〈φ|φ〉〈ψ|ψ〉
(3.1)

If |φ 〉 and |ψ 〉 are normalized to 1, the denominator drops out. This will be assumed in
the following. From the basic property 〈φ|ψ〉 = 〈ψ|φ〉∗ (eq. (2.3)), we have the identity:

P (φ|ψ) = |〈φ|ψ〉|2 = |〈ψ|φ〉|2 = P (ψ|φ) . (3.2)

We therefore have the non-intuitive result that in any quantum theory the probability of
finding a system prepared in state |ψ 〉 to be in state |φ 〉 is the same as the probability
to measure it to be in state |ψ 〉 if it was prepared to be in state |φ 〉. This equality
immediately leads to the principles of microreversibility and detailed balance, which
belong to the foundations of equilibrium statistical mechanics.

When discussing quantum measurements, it has been traditional, since the early days
of quantum mechanics, to add Niels Bohr’s postulate of the Collapse of the wave
function, which states that:

After a measurement the system will be in the state selected by the measurement
process, independently of its state before the measurement.

Thus, if a system prepared in an arbitrary state |ψ 〉 is measured to be in state |φ 〉, it
will be in that state, with probability 1, immediately after the measurement. Although
supported by countless experiments, the status of this postulate has always been con-
tentious, because it does not seem compatible with the mathematical structure of the
theory, essentially because a collapse of the wavefunction cannot be described by a linear
operator on H.

Niels Bohr circumvented this problem by demanding that the measurement equipment
must be classical objects, describable by classical physics. The point is that the applica-
bility of eq. (3.1) assumes that both the system and measurement apparatus are isolated
quantum systems, each completely described by a wavefunction. This assumption is not
fulfilled in most experimental situations, in particular not by the measurement appa-
ratus. This would require it to be totally insulated from the surroundings during a
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measurement, as any contact, e.g. thermal or electrical, with the surroundings will in-
validate it. And the interaction of a quantum system with a classical system will quite
generally effectively lead to the collapse of the wavefunction.

Nevertheless, this situation is not entirely satisfactory, if one considers Quantum Me-
chanics as the fundamental theory, and Classical Mechanics as an approximation to it.
One would think that it should be possible to describe measurements without relying
on the classical approximation. And this does indeed turn out to be the case. Just like
for a classical system, one must turn to statistical mechanics to describe a quantum
system interacting with its surroundings. In the 1980s it was realized that quantum
statistical mechanics predicts that a non-isolated quantum system interacting with its
surroundings will undergo a process called quantum decoherence, resulting in the system
evolving into an eigenstate with the result of the measurement process as eigenvalue.
Thus the collapse of the wave function need not be added as a separate postulate, after
all.

Furthermore, about the same time it was realized that it is possible to perform quantum
non-demolition experiments, where the measurement process itself can be described by
quantum mechanics. Nevertheless, in most situations the collapse of the wave function
gives the correct result, it should just not be regarded as a postulate, but as a theoretical
prediction.

Observables

Classical dynamical variables are represented by Hermitean (or self-adjoint) operators
in quantum mechanics. These are assumed to have a complete set of real eigenvalues,
i.e. the solutions of the eigenvalue equation:

A| ai 〉 = ai| ai 〉 , (3.3)

has infinitely many solutions, | ai 〉, which we for convenience have labelled by their
eigenvalues, ai. For the moment we assume that the eigenvalues are discrete, and that
some way of labelling degenerate states have been implemented, so that 〈ai|aj〉 = δij .
That the set {| ai 〉} is complete, and hence can be used as a basis for H, means that
we have the resolution of the unit, eq. (2.6):∑

i

| ai 〉〈ai| = 1 , (2.6)

The expansion of an arbitrary wavefunction in this basis of eigenvectors is of course
identical in form to eq. (2.1a):

|ψ 〉 = 1|ψ 〉 =
∑
i

| ai 〉〈ai|ψ〉 =
∑
i

ψi| ai 〉 , ψi = 〈ai|ψ〉 . (2.1c)

The probability that we shall obtain the value ai in an experiment measuring the ob-
servable A is then, according to eq. (3.1):

P (ai|ψ) = |〈ai|ψ〉|2 = |ψi|2 .
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We note that since:
P (ai|aj) = |〈ai|aj〉|2 = δij , (3.4)

a measurement to see if the system is in the state | ai 〉 when it was prepared in the
state | aj 〉 delivers the only sensible answer.

By the usual definition, the expectation value of A in the state |ψ 〉 is, using eqs. (2.6)
and (3.3):

< A >ψ =
∑
i

aiP (ai|ψ) =
∑
i

ai |〈ai|ψ〉|2 =
∑
i

ai〈ψ|ai〉〈ai|ψ〉

=
∑
i

〈ψ|ai〉〈ai|A|ψ〉 = 〈ψ|A|ψ〉 .
(3.5)

Which operators that are important in describing a physical system, and their interre-
lations, is of course an experimental issue in the last instance. In this course we shall
assume that they can be found from the corresponding classical theory, using canonical
quantization, or path integral quantization.

Continuous variables

We know that some important physical variables, like position, x, and momentum, p,
have a continuous set of eigenvalues. The expansion in eq. (2.1c) then becomes an
integral:

|ψ 〉 =
∫

daψ(a)| a 〉 , ψ(a) = 〈a|ψ〉 , (2.1′)

while the completeness relation takes the form∫
da | a 〉〈a| = 1 . (2.6′)

The states {| a 〉} are not physical, in the sense that one can ever precisely create or
measure a physical system in such a state. This would require infinite precision. In-
deed, the eigenvectors of continuous variables are not normalizable, although the result
〈a|a′〉 = 0 for a 6= a′ still holds. The correct normalization condition is instead:

〈a|a′〉 = δ(a− a′) . (2.2′)

This means that we have extended our formalism to allow distributions. But only nor-
malizable states represent truly physical states, and such states have a straightforward
interpretation. From eq. (2.6’) we have, if |ψ 〉 is normalized:

1 = 〈ψ|ψ〉 =
∫

da |〈a|ψ〉|2 =
∫

da|ψ(a)|2 . (2.4′)

This means, of course, that p(a|ψ) = |ψ(a)|2 is the probability density of finding a system
in the state |ψ 〉 to have a value of a between a and a+ da. Similarly, the expectation
value of A can be written:

〈ψ|A|ψ〉 =
∫

da a|ψ(a)|2 =
∫

da aρ(a) . (3.5′)
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The above in particular applies to a = x and a = p. One also finds the coordinate
representation of p from the canonical commutation relation [x, p] = ih̄. Let | ξ 〉 and
| ξ′ 〉 be two eigenvectors of x. Then:

ih̄δ(ξ − ξ′) = ih̄〈ξ|ξ′〉 = 〈ξ|(xp− px)| ξ′〉 = (ξ − ξ′)〈ξ|p| ξ′〉

〈ξ|p| ξ′〉 = ih̄ δ(ξ − ξ
′)

ξ − ξ′
= h̄

i δ
′(ξ − ξ′) ,

(3.6)

where we have used the relation between δ(x) and δ′(x) = −dδ(x)/dx = −δ(x)/x in the
last step. It is easy to verify the correctness of this result:

pψ(x) = 〈x|p|ψ〉 =
∫

dx′〈x|p|x′〉〈x′|ψ〉 = h̄

i

∫
dx′ δ′(x− x′)ψ(x′) = h̄

i ψ
′(x) .

Interchanging x↔ p in this derivation, one also finds the momentum-space representa-
tion of x:

xψ(p) = ih̄ψ′(p) .
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