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Physical interpretation of quantum theories

The basic assumption of any quantum theory is that there is a duality between a pure
(isolated) system, which can be completely characterized by a ket |ψ〉 in the Hilbert
space, H, and a (complete and ideal) measurement, which can detect if the system
is in a state |ψ〉, or not. Such an experiment only produces a probabilistic result, a
conditional probability that we observe the system to be in state |ψ〉 given that the
system was in state |φ〉:

P (φ|ψ) = |〈φ|ψ〉|2

〈φ|φ〉〈ψ|ψ〉
(3.1)

If |φ〉 and |ψ〉 are normalized to 1, the denominator drops out. This will be assumed in
the following. From the basic property 〈φ|ψ〉 = 〈ψ|φ〉∗ (eq. (2.4)), we have the identity:

P (φ|ψ) = |〈φ|ψ〉|2 = |〈ψ|φ〉|2 = P (ψ|φ) . (3.2)

It is thus postulated that systems can in principle be observed to be in any possible
physical state. Furthermore, we have the non-intuitive result that in any quantum
theory the probability of measuring a system prepared in state |φ〉 to be in state |ψ〉 is
the same as the probability that it is observed to be in state |φ〉 if has been prepared to be
in state |ψ〉. This equality immediately leads to the principles of microreversibility and
detailed balance, which belong to the foundations of equilibrium statistical mechanics.

When discussing quantum measurements, it is traditional since the early days of quan-
tum mechanics to add the postulate of the Collapse of the wave function, which
states that:

After a measurement the system will be in the state selected by the measurement
process, independently of its state before the measurement.

Although supported by countless experiments, the status of this postulate has always
been contentious, because does not seem compatible with the mathematical structure
of the theory, essentially because it cannot be described by a linear operator on H.
But the situation has proven more interesting. The point is that the applicability of
eq. (3.1) assumes that both system and measurement apparatus are isolated systems,
fully described by a wavefunction. But this assumption is not fulfilled in most exper-
imental situations. This would require that the equipment is totally insulated from
the surrounding during the measurements, any thermal or electrical contact with the
surroundings would invalidate it.

Just like for a classical system interacting with its surroundings, one must turn to
statistical mechanics to describe a quantum system interacting with its environment.
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But it was only in the 1980s that it was realized that such a system would undergo what
is known as quantum decoherence, a process obeying the laws of quantum statistical
mechanics, leading to the prediction that the system after the measurement will remain
in the state which is the result of the measurement. Thus this need not be added as a
separate postulate after all. Furthermore, about the same time it was realized that it
is possible to perform quantum non-demolistion experiments, where the measurement
process itself can be described by quantum mechanics. Nevertheless, in most cases the
collapse of the wave function is the correct approach, it should just not be regarded as
a postulate, but as a theoretical prediction.

Observables

Classical dynamical variables are represented by Hermitean (or self-adjoint) operators
in quantum mechanics. These are assumed to have a complete set of real eigenvalues,
i.e. the solutions of the eigenvalue equation:

A|ai〉 = ai|ai〉 , (3.3)
has infinitely many solutions, |ai〉, which we for convenience have labelled by their
eigenvalues, ai. For the moment we assume that the eigenvalues are discrete, and that
some way of labelling degenerate states have been implemented, so that 〈ai|aj〉 = δij .
That the set {|ai〉} is complete, and hence can be used as a basis for H, means that we
have the resolution of the unit, eq. (2.7):∑

i

|ai〉〈ai| = I , (2.7)

The expansion of an arbitrary wavefunction in this basis of eigenvectors is of course
identical in form to eq. (2.1.a):

|ψ〉 = I|ψ〉 =
∑
i

ψi|ai〉 , ψi = 〈ai|ψ〉 . (2.1c)

The probability that we shall measure the value ai in an experiment measuring the
variable A is then, according to eq. (3.1):

P (ai|ψ) = |〈ai|ψ〉|2 = |ψi|2 .
We note that since:

P (ai|aj) = |〈ai|aj〉|2 = δij , (3.4)
a measurement if the system is in the state |ai〉 when it indeed is, delivers the only
sensible answer.

By the usual definition, the expectation value of A in the state |ψ〉 is then, using eqs.
(2.7) and (3.3):

< A >ψ =
∑
i

aiP (ai|ψ) =
∑
i

ai |〈ai|ψ〉|2 =
∑
i

ai〈ψ|ai〉〈ai|ψ〉

=
∑
i

〈ψ|ai〉〈ai|A|ψ〉 = 〈ψ|A|ψ〉 .
(3.5)

Which operators that are important in describing a physical system, and their interre-
lations, are of course an experimental issue in the last instance. In this course we shall
assume that they can be found from the corresponding classical theory, using canonical
quantization, or path integral quantization.
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Continuous variables

We know that some important physical variables, like position, x, and momentum, p,
has a continuous set of eigenvalues. Then the expansion in eq. (2.1c) then becomes an
integral:

|ψ〉 =
∫

daψ(a)|a〉 , ψ(a) = 〈a|ψ〉 , (2.1′)

while the completeness relation takes the form∫
da |a〉〈a| = I (2.7′)

The states {|a〉 are not physical, in the sense that one can ever precisely create or mea-
sure a physical system in such a state, it would require infinite precision (and energy).
Indeed, continuous variables are not normalizable, although the result 〈a|a′〉 = 0 for
a 6= a′ still holds. The correct normalization condition is instead:

〈a|a′〉 = δ(a− a′) . (2.3′)

This means that we have extended our formalism to allow distributions. But only nor-
malizable states represent truly physical states, and such states have a straightforward
interpretation. From eq. (2.7’) we have, if |ψ〉 is normalized:

1 = 〈ψ|ψ〉 =
∫

da |〈a|ψ〉|2 =
∫

da|ψ(a)|2 . (2.5′)

This means, of course, that p(a|ψ) = |ψ(a)|2 is the probability density of finding a
system in the state |ψ〉 to have a value of a between a and a + da. Similarly, the
expectation value of A can be written:

〈ψ|A|ψ〉 =
∫

da a|ψ(a)|2 =
∫

da aρ(a) . (3.5′)

The above in particular applies to a = x and a = p. One also finds the coordinate
representation of p from the canonical commutation relation [x, p] = ih̄. Let |ξ〉 and |ξ′〉
be two eigenvectors of x. Then:

ih̄δ(ξ − ξ′) = ih̄〈ξ|ξ′〉 = 〈ξ|(xp− px)|ξ′〉 = (ξ − ξ′)〈ξ|p|ξ′〉

〈ξ|p|ξ′〉 = ih̄ δ(ξ − ξ
′)

ξ − ξ′
= h̄

i δ
′(ξ − ξ′) ,

(3.6)

where we have used the relation between δ(x) and δ′(x) = −dδ(x)/dx = −δ(x)/x in the
last step. It is easy to verify the correctness of this result:

pψ(x) = 〈x|p|ψ〉 =
∫

dx′〈x|p|x′〉〈x′|ψ〉 = h̄

i

∫
dx′ δ′(x− x′)ψ(x′) = h̄

i ψ
′(x) .

Interchanging x↔ p in this derivation, one also finds the momentum-space representa-
tion of x:

xψ(p) = ih̄ψ′(p) .
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