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Quantum electrodynamics (QED)

In the previous lecture we studied the Yukawa coupling. What other possible couplings
can fermions have? It is, of course tempting to try LI = g/n!ψ̄ψφn, coupling a fermion-
anti-fermion pair to n scalars. But it turns out that no such coupling is renormalizable
for n > 1 in four space-time dimensions, although they can be in lower dimensions.
Furthermore, it turns out that all couplings with more than one ψ̄ψ pair are also non-
renormalizable. Thus a renormalizable interaction Lagrangian involving fermions much
must one or more of the 16 basic Dirac bilinear forms combined with gamma-matrices:
(see Lecture Note 18):

ψ̄ψ ; ψ̄γ5ψ ; jµ = ψ̄γµψ ; j5
µ = ψ̄γµγ5ψ ; ψ̄σµνψ .

The first gives rise to the Yukawa-coupling to a scalar field. The same does the second,
with the only difference that it couples to a pseudoscalar field, i.e. a field of negative
parity. The antisymmetric tensor ψ̄σµνψ could couple to some other antisymmetric
tensor field. One obvious candidate is the electromagnetic field tensor, Fµν . Indeed,
LI = gψ̄σµνψFµν describes a theory of a fermion with an arbitrary magnetic moment,
unrelated to its charge, as shown by Pauli already in 1941. But also this theory is
non-renormalizable. This is perhaps fortunate, as it would otherwise add another set
of constants of nature to the Standard Model. Also note that no traceless symmetric
tensor can be formed from the gamma matrices. This reflects the fact that such a
tensor transforms according to the spin-2 representation of the rotation group, while
two spin- 1

2Dirac particles can only couple directly to s = 0 and s = 1, according to
the Clebsh–Gordan series, eq. (13.26-7). Thus, there is no direct coupling to gravitons.
Actually, the description of spinors in general relativity is somewhat subtle.

It remains to consider couplings to vector (and pseudo-vector) currents. From Classical
Mechanics we know that the interaction between a particle of charge q and an external
field can be implemented by the simple rule of minimal substitution, pµ → pµ + qAµ,
where Aµ = [A0 = Φ,A] is the electromagnetic 4-vector potential. After quantization,
pµ → i∂µ, the Dirac equation, eq. (15.9), becomes (note that Schwartz mostly considers
electrons as his particles, so he uses q = −e with e > 0):

(iγµ∂µ + qγµAµ −m)ψ(x) = (i /D −m)ψ = 0 , (20.1)

where we have introduced the covariant derivative Dµ = ∂µ − iqAµ. The Dirac Hamil-
tonian can be similarly written as:

H = α · (p + qA) + βm+ qΦ , (20.2)
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with Φ = A0. This can be used in relativistic quantum mechanics as the basic Hamil-
tonian for an electron moving in an external field Aµ. It is heavily used in relativistic
atomic physics, where the electrons of an atom are treated as moving in the classical
Coulomb field of a heavy nucleus.

Eq. (20.1) is the Euler–Lagrange equation of the Dirac theory with a Lagrangian density:

L = LD + LI = ψ̄(i∂µγµ −m)ψ + qψ̄γµψAµ = ψ̄(i /D −m)ψ (20.3)

We see that we can write the interaction simply as LI = qjµAµ, where jµ is the
conserved Noether current of the Dirac theory, arising from its global phase invariance.
The charge q is often absorbed in the definition of jµ, with or without its sign. Thus
Schwartz uses Jµ = ejµ = −qjµ. It is instructive to “square” this equation, similarly
to what we did in the free case. Since:

[Dµ, Dν ] = −iq(∂µAν − ∂νAµ) = −iqFµν 6= 0 , (20.4)

we use the relation:

/O1 /O2 = 1
4
(
{Oµ1 , O

ν
2}{γ

µ, γν}+ [O1µ, O2ν ][γ
µ
1 , γ

ν
2 ]
)

= 1
2 (O1 ·O2 +O2 ·O1)−

i
2 [O1µ, O2ν ]σµν ,

(20.5)

valid for any vector operators Qµ1 and Oν2 . With O1 = (i /D +m) and O2 = (i /D −m),
one finds:

0 = (i /D +m)(i /D −m)ψ =
(
(i /D)2 −m2 + i

2 [Dµ, Dν ]σµν
)
ψ

=
(
(i∂µ + qAµ)2 −m2 + q

2Fµνσ
µν
)
ψ .

(20.6)

If we drop the term involving σµν we have the Klein-Gordon equation for a charged spin-
0 particle in an electromagnetic field (see below). For a Dirac particle the additional
term is identical in form to the one which appears in a Pauli term. Thus, the Dirac
Hamiltonian predicts that charged fermions have an intrinsic magnetic moment. In the
non-relativistic limit one can show that this coupling to a magnetic field is given by a
potential energy:

Vs =
q

2m (L + 2S) ·B, . (20.7)

The term with L is the coupling of the magnetic field to the orbital angular momentum,
describing the precession of a particle in a magnetic field, which is also present for a
spin-0 particle. The term involving S is the spin precession. The coefficient g = 2 for
this term is a surprise of the Dirac theory, called the gyromagnetic ratio. This coefficient
is further modified in QED by radiative corrections. The lowest order correction can
be calculated fairly straightforwardly in perturbation theory. The result is famous:
g = 2 + α

2π , where, reinstating units, α = e2

4πε0h̄c
≈ 1

137 is the fine structure constant
(see Schwartz ch. 17).
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If we add the Lagrangian density of the free electromagnetic field (see Schwartz sec.
(3.4)) to L in eq. (20.3), we obtain the full QED Lagrangian density:

LQED = LD + LI + LEM , LEM = −1
4F

µνFµν = −1
4(∂

µAν − ∂νAµ)2 . (20.8)

However, based on what we have learned about the representations of the Poincaré
group, we see that something strange is going on here. The irreducible representations
of that group are characterized by mass and spin. Since there is no mass term in LEM, it
must describe massless particles, which is excellent, because the photon mass is known
experimentally to be below 10−18 eV or 2 · 10−54 kg. But a massless particle of spin
larger than zero should only have two spin components (see Lecture Notes 15), and
Aµ seems to have four degrees of freedom. As a matter of fact, A0 transforms as a
scalar under rotations, which corresponds to spin-0 particle. Thus this must somehow
be removed. But even A needs a constraint in order to eliminate the ms = 0 component
of the field. This turns out to be closely related to the property of gauge invariance of
the electromagnetic field.

The explicit presence of the vector potential Aµ in the field equations is at first glance
already quite disturbing, because we know that it is not unique. Under a gauge trans-
formation:

Aµ → A′µ = Aµ + 1
q
∂µα , (20.9a)

with an arbitrary real function α(x), Fµν , i.e. the physical fields E and B, remain
unchanged. The crucial observation is that this transformation can be compensated for
by a local phase transformation on the fields:

ψ(x) → ψ′(x) = eiα(x)ψ(x) . (20.9b)

Under this combined transformation we have:

(i∂µ + qA′µ)ψ′(x) = i∂µ
(
eiα(x)ψ(x)

)
+ q

(
Aµ + 1

q
∂µα(x)

)
eiα(x)ψ(x)

= eiα(x) (i∂µ + qAµ)ψ(x) .
(20.9c)

Therefore,
ψ̄′(x)(i∂µ + qA′µ)ψ′(x) = ψ̄(x)(i∂µ + qAµ)ψ(x) ,

so the Lagrangian is indeed invariant under local gauge transformation.

The same construction goes through for a complex scalar field. The Lagrangian is

L = (Dµφ)∗(Dµφ)−m2φ∗φ . (20.10)

Eqs. (20.9) remain valid, so this Lagrangian density is gauge invariant. It leads to the
Euler-Lagrange equation:

[(pµ + qAµ)2 −m2]φ = [(i∂µ + qAµ)2 −m2]φ(x) = 0 . (20.11)

Eq. (20.10) together with the Lagrangian for the free electromagnetic field constitutes
the Lagrangian for scalar electrodynamics.
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The technically correct canonical quantization procedure of the electromagnetic field
is actually extremely tricky, indeed the standard field theory textbook of Peskin and
Schroeder simply skip the issue, preferring the path integral approach, which has the
additional advantage that it applies also to non-Abelian gauge theories. Here we shall
follow suit, just mentioning some of the more important points. The first is that since
L does not contain ∂0A0 at all, which means that the scalar potential has no conjugate
momentum, and so is no dynamical field at all, and cannot be quantized. Thus it is
basically just an auxillary classical field. Now we can actually choose to work in a gauge
with A0 = 0, which is called an axial gauge. This in no way prevents the existence of
electric fields, they are simply given by E = −∂0A. One then just quantize A, but one
must still get rid of one degree of freedom, which can be done. Another common gauge
choice is Coulomb gauge. In this one chooses α(x) such that ∇ ·A = 0, and treat A0 as
an auxillary field, without dynamics. This choice actually works very well for radiation
interacting with essentially non-relativistic systems, and is the gauge of choice for many
applications in atomic and condensed matter physics, including laser physics. But its
lack of nice Lorentz transformation properties makes the Feynman rules unwieldy and
unsuitable for studies of the basic structure of QED and application in fields like high
energy physics.

For the latter class of problems, the Lorentz gauge is mostly preferred, which is defined
by the covariant constraint:

∂µA
µ = ∂0A0 +∇ ·A = 0 . (20.12)

To get an idea how this might work, assume that we expand the photon field in this
base in terms of the two polarization modes which the group theory tells us are all there
is.

Aµ(x) =
∫ d3k

(2π)3
1√
2k0

2∑

i=1

[
εiµ(k)aike−ip·x + εi

∗
µ(k)aik

†
eip·x

]
. (20.13)

Here k0 = |k| = ωk for a massless field, and εiµ(k), k = 1, 2 are called polarization
vectors. We see that Aµ is real even if the εiµ’s are complex. They are chosen both to
be orthonormal and space-like, and to satisfy the Lorentz gauge condition:

ei
∗
· ej = eiµ

∗
ej
µ = −δij , k · εi = kµεiµ(k) = 0 . (20.14)

If one performs a Lorentz transformation on Aµ, the polarization vectors are mixed,
not only among themselves, but also with kµ, but do not get time-like component
along an time-like basis vector ε0 with ε0 · ε0 > 0. If they did, it would be possible to
find some vector which is transformed from being space-like to being time-like by the
transformation. Thus under a Lorentz transformation, Λ, one has:

εiµ → ε′µ
i = cij(Λ)εjµ + ci(Λ)kµ . (20.15)

The Lorentz transformations preserve k · ei = 0 since k2 = 0.

Now, consider the matrix element of a process creating or absorbing a single photon. In
follows from the LSZ formula, just as in with eq. (19.2), that this must have the form

M = εµM
µ , (20.16)
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where ε is some linear combination or ε1 and ε2. But under a Lorentz transformation,
alsoMµ will transform as a four-vector, with the same transformation law as εµ. That
means that the transformedM has the general structure:

M′ = ε′′µM
′µ + c(Λ)kµM′

µ
,

where ε′′ is a linear combination of ε′1 and ε′2. But if we had made the calculation
directly in the primed coordinate system, the last term would not have appeared. The
solution to this dilemma is to assume that we have a consistency condition, which reads:

kµM
µ = 0 , (20.17)

for all processes. This is called a Ward identity, and has to be satisfied by any matrix
element of a physical process. It remains valid also in the case of several photons in the
initial and/or final state. This correctness of this result can indeed be proven rigorously.

For completeness, we note that a gauge field construction based on the pseudo-vector
current j5µ = ψ̄γµγ5ψ does not work, because it corresponds to a phase transformation
eiγ

5α, which cannot be undone by any transformation on a pseudo-vector field Bµ, as
this carries no spin indices.
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