UNIVERSITETET I STAVANGER

INSTITUTT FOR MATEMATIKK OG NATURVITENSKAP

Lecture notes for FYS610 Many particle Quantum Mechanics

Note 18, 5.4 2017

Additions and comments to Quantum Field Theory and the Standard Model by Matthew D. Schwartz (2014)

Further symmetries of the Dirac field

We have already encountered 3 sets of independent Dirac matrices which play an important role in the Dirac theory, consisting of $\mathbb{1}_4$, γ^{μ} and $S^{\mu\nu} = \frac{i}{4}[\gamma^{\mu}, \gamma^{\nu}] = \frac{1}{2}\sigma^{\mu\nu}$. These transform as a scalar, vector and an antisymmetric tensor under (proper) Lorentz transformations, respectively. But there are two more such sets. One only contains the scalar:

$$\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \frac{i}{4!} \epsilon_{\mu\nu\sigma\rho} \gamma^\mu \gamma^\nu \gamma^\sigma \gamma^\rho \,. \tag{18.1}$$

One easily verifies that

$$\gamma^{5^{\dagger}} = \gamma^{5}, \qquad (\gamma^{5})^{2} = \mathbb{1}_{4}, \qquad \{\gamma^{5}, \gamma^{\mu}\} = 0.$$
 (18.2)

From the last equation it follows that $[\gamma^5, S^{\mu\nu}] = 0$, which means that γ^5 commutes with all Lorentz transformation operators, proving that the Dirac representation is reducible, since states with different eigenvalues of γ^5 transform without mixing. But from $(\gamma^5)^2 = \mathbb{1}_4$ it follows that the eigenvalues are ± 1 . Indeed, in the Weyl basis γ^5 is diagonal:

$$\gamma^5 = \begin{pmatrix} -\mathbb{1}_2 & 0\\ 0 & \mathbb{1}_2 \end{pmatrix} \,. \tag{18.3}$$

Indeed, from the representation of eq. (16.1):

$$\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}, \tag{16.1}$$

we see that the left-handed and right-handed components of the Dirac-spinor are eigenfunctions of γ^5 , with eigenvalues -1 and +1, respectively.

The last set of independent Dirac matrices contains the matrices $\gamma^{\mu}\gamma^{5} = -\gamma^{5}\gamma^{\mu}$. One can show that by using $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbb{1}_{4}$, all other products of gamma matrices can be reduced to a member of one of these sets. Altogether we then have 16 basic matrices in the Dirac algebra, 2 scalars with together 8 matrices and 1 antisymmetric tensor, with 6 independent components.

From the five sets of Dirac matrices, we can construct local density operators which transform simply under Lorentz transformation by squeezing them between $\bar{\psi}$ and ψ , which together transform as a Lorentz scalar, as we know. In addition to the scalar $\bar{\psi}\psi$ the most important are the two vector current densities:

$$j^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\psi(x), \qquad j^{5^{\mu}}(x) = \bar{\psi}(x)\gamma^{\mu}\gamma^{5}\psi(x), \qquad (18.3)$$

It is easily shown that j^{μ} is conserved if $\psi(x)$ satisfies the Dirac equation:

$$\partial_{\mu}j^{\mu} = (\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi + \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi = (\mathrm{i}m\bar{\psi})\psi + \bar{\psi}(-\mathrm{i}m\psi) = 0.$$
(18.4)

When we couple this to the electromagnetic field $\pm e j^{\mu}$ will become the electric current density of a field of particles of charges $\pm e$. We also note that $\psi^{\dagger}\psi = j^{0}$, so this quantity will become the charge density of the field, not a probability density, as one might expect in analogy with non-relativistic quantum mechanics. It is easily verified from *Schwartz* eq. (3.23) that j^{μ} is the Noether current for the internal symmetry of the Dirac Lagrangian:

$$\psi(x) \to \psi'(x) = e^{i\alpha}\psi(x), \qquad (18.5)$$

where α is an arbitrary constant.

The other current density, $j^{5^{\mu}}$, is called the **axial current**. This has a divergence:

$$\partial_{\mu} j u \mu = (\partial_{\mu} \bar{\psi}) \gamma^{\mu} \gamma^{5} \psi + \bar{\psi} \gamma^{\mu} \gamma^{5} \partial_{\mu} \psi = (\partial_{\mu} \bar{\psi}) \gamma^{\mu} \gamma^{5} \psi - \bar{\psi} \gamma^{5} \gamma^{\mu} \partial_{\mu} \psi$$

= $(\mathrm{i} m \bar{\psi}) \gamma^{5} \psi - \bar{\psi} (-\mathrm{i} m \psi) = 2\mathrm{i} m \, \bar{\psi} \gamma^{5} \psi ,$ (18.6)

where we have used the last of eqs. (18.2). Thus $j^{5^{\mu}}$ is conserved only if m = 0. In cases where the mass can be (almost) neglected, like in neutrino physics, it is often convenient the linear combinations:

$$j_L^{\mu} = \bar{\psi}\gamma^{\mu} \left(\frac{1-\gamma^5}{2}\right)\psi, \qquad j_R^{\mu} = \bar{\psi}\gamma^{\mu} \left(\frac{1+\gamma^5}{2}\right)\psi, \qquad (18.7)$$

These are (proportional to) the current densities of left-handed and right-handed particles, respectively, and are separately conserved in the massless limit. In this limit, also $\gamma^{5^{\mu}}$ is a Noether current, for the internal transformation:

$$\psi(x) \to \psi'(x) = e^{i\alpha\gamma^5}\psi(x), \qquad (18.8)$$

Under such a transformation, the Lagrangian density becomes, from eq. (15.19):

$$\begin{aligned} \mathcal{L}[\psi',\partial_{\mu}\psi'] &= \bar{\psi}'^{\dagger}(i\gamma^{\mu}\partial_{\mu} - m)\psi' = i\psi^{\dagger}e^{-i\alpha\gamma^{5}}\gamma^{0}\gamma^{\mu}e^{i\alpha\gamma^{5}}\partial_{\mu}\psi - m\psi^{\dagger}e^{-i\alpha\gamma^{5}}\gamma^{0}e^{i\alpha\gamma^{5}}\psi \\ &= \mathcal{L}[\psi,\partial_{\mu}\psi] - m\bar{\psi}\left(e^{2i\alpha\gamma^{5}} - 1\right)\psi\,. \end{aligned}$$

where we have used that from eq. (18.2) it follows that:

$$e^{-\mathrm{i}\alpha\gamma^5}\gamma^\mu = \gamma^\mu e^{\mathrm{i}\alpha\gamma^5}\,,\tag{18.9}$$

as we see by expanding the exponential function and using $\gamma^{5^2} = \mathbb{1}_4$. Thus the chiral transformation of eq. (18.8) is a symmetry of the classical Lagrangian for m = 0. It is worth noting, though, that it is one of the relatively rare cases where quantum effects actually break the classical symmetry, so $j^{5^{\mu}}$ is, after all, *not* conserved in the quantum theory. Such a phenomenon is called an *anomaly*, in the present case the *axial*, or *Adler–Bell–Jackiw*, anomaly.

For the discrete symmetries, parity, P, time reversal, T, and particle-antiparticle, or charge conjugation, C, see Schwartz sec. 11.4-6.