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Further symmetries of the Dirac field

We have already encountered 3 sets of independent Dirac matrices which play an impor-
tant role in the Dirac theory, consisting of 14, γ

µ and Sµν = i
4 [γ

µ, γν ] = 1
2σ

µν . These
transform as a scalar, vector and an antisymmetric tensor under (proper) Lorentz trans-
formations, respectively. But there are two more such sets. One only contains the scalar:

γ5 = iγ0γ1γ2γ3 = i
4!εµνσργ

µγνγσγρ . (18.1)

One easily verifies that

γ5† = γ5 , (γ5)2 = 14 , {γ5, γµ} = 0 . (18.2)

From the last equation it follows that [γ5, Sµν ] = 0, which means that γ5 commutes
with all Lorentz transformation operators, proving that the Dirac representation is
reducible, since states with different eigenvalues of γ5 transform without mixing. But
from (γ5)2 = 14 it follows that the eigenvalues are ±1. Indeed, in the Weyl basis γ5 is
diagonal:

γ5 =
(
−12 0
0 12

)
. (18.3)

Indeed, from the representation of eq. (16.1):

ψ =
(
ψL

ψR

)
, (16.1)

we see that the left-handed and right-handed components of the Dirac-spinor are eigen-
functions of γ5, with eigenvalues −1 and +1, respectively.

The last set of independent Dirac matrices contains the matrices γµγ5 = −γ5γµ. One
can show that by using {γµ, γν} = 2gµν14, all other products of gamma matrices can
be reduced to a member of one of these sets. Altogether we then have 16 basic matrices
in the Dirac algebra, 2 scalars with together 8 matrices and 1 antisymmetric tensor,
with 6 independent components.

From the five sets of Dirac matrices, we can construct local density operators which
transform simply under Lorentz transformation by squeezing them between ψ̄ and ψ,
which together transform as a Lorentz scalar, as we know. In addition to the scalar ψ̄ψ
the most important are the two vector current densities:

jµ(x) = ψ̄(x)γµψ(x) , j5µ(x) = ψ̄(x)γµγ5ψ(x) , (18.3)
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It is easily shown that jµ is conserved if ψ(x) satisfies the Dirac equation:

∂µj
µ = (∂µψ̄)γµψ + ψ̄γµ∂µψ = (imψ̄)ψ + ψ̄(−imψ) = 0 . (18.4)

When we couple this to the electromagnetic field ±ejµ will become the electric current
density of a field of particles of charges ±e. We also note that ψ†ψ = j0, so this
quantity will become the charge density of the field, not a probability density, as one
might expect in analogy with non-relativistic quantum mechanics. It is easily verified
from Schwartz eq. (3.23) that jµ is the Noether current for the internal symmetry of
the Dirac Lagrangian:

ψ(x)→ ψ′(x) = eiαψ(x) , (18.5)

where α is an arbitrary constant.

The other current density, j5µ, is called the axial current. This has a divergence:

∂µjuµ = (∂µψ̄)γµγ5ψ + ψ̄γµγ5∂µψ = (∂µψ̄)γµγ5ψ − ψ̄γ5γµ∂µψ

= (imψ̄)γ5ψ − ψ̄(−imψ) = 2imψ̄γ5ψ ,
(18.6)

where we have used the last of eqs. (18.2). Thus j5µ is conserved only if m = 0. In cases
where the mass can be (almost) neglected, like in neutrino physics, it is often convenient
the linear combinations:

jµL = ψ̄γµ
(
1− γ5

2

)
ψ , jµR = ψ̄γµ

(
1 + γ5

2

)
ψ , (18.7)

These are (proportional to) the current densities of left-handed and right-handed parti-
cles, respectively, and are separately conserved in the massless limit. In this limit, also
γ5µ is a Noether current, for the internal transformation:

ψ(x)→ ψ′(x) = eiαγ5
ψ(x) , (18.8)

Under such a transformation, the Lagrangian density becomes, from eq. (15.19):

L[ψ′, ∂µψ′] = ψ̄′†(iγµ∂µ −m)ψ′ = iψ†e−iαγ5
γ0γµeiαγ5

∂µψ −mψ
†e−iαγ5

γ0eiαγ5
ψ

= L[ψ, ∂µψ]−mψ̄
(
e2iαγ5

− 1
)
ψ .

where we have used that from eq. (18.2) it follows that:

e−iαγ5
γµ = γµeiαγ5

, (18.9)

as we see by expanding the exponential function and using γ52 = 14. Thus the chiral
transformation of eq. (18.8) is a symmetry of the classical Lagrangian for m = 0. It is
worth noting, though, that it is one of the relatively rare cases where quantum effects
actually break the classical symmetry, so j5µ is, after all, not conserved in the quantum
theory. Such a phenomenon is called an anomaly, in the present case the axial, or
Adler–Bell–Jackiw, anomaly.

For the discrete symmetries, parity, P , time reversal, T , and particle-antiparticle, or
charge conjugation, C, see Schwartz sec. 11.4-6.
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