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Quantization of the Dirac field

In Lecture Notes 6 and 7 we have discussed the quantization of Fermion fields, and
we know from introductory quantum mechanics courses that spin- 1

2particles must be
quantized as Fermions. Still, it is instructive to see why this is necessary. From the
Dirac Lagrangian,

L[ψ, ∂µψ] = ψ̄(iγµ∂µ −m)ψ , (15.19)

one finds the conjugate field momentum density πr(x) = iψr†(x), and the field Hamil-
tonian:

H =
∫

d3x [π(x)ψ(x)− L] =
∫

d3x ψ̄[−iγ ·∇+m]ψ =
∫

d3xψ†HDψ , (17.1)

where HD is the one-particle Dirac Hamiltonian:

HD = −iα ·∇+mβ = γ0(−iγ ·∇+m) . (15.6)

In order to obtain the creation and annihilation operators, we expand ψ(x) in a complete
set of solution of our one-particle equation, which now is the Dirac equation, i.e. in
terms of plane waves times basis spinors ur(p), v′s(p). Working in the Schrödinger
picture, where the operators for free particles are time independent, it suffices to make
the expansion at t0 = 0, and we can disregard the sign of the energy phase, i.e. the
dependence of the sign of p0, so v′r(p) = vr(−p). Thus we expand:

ψS(x) =
∫ d3p

(2π)3
1√
2ωp

e−ip·x
2∑

r=1

(
arpu

r(p) + br−pv
r(−p)

)
, (17.2)

where asp and bsp are Hermitean operators. We now postulate that they satisfy the
standard commutation relations for Bosonic creation and annihilation operators:

[arp, asq
†] = [brp, bsq

†] = (2π)3
δ3(x− y) δrs , [arp, bsq

†] = [brp, asq
†] = 0 ,

[arp, asq] = [brp, bsq] = [arp
†, asq

†] = [brp
†, bsq

†] = 0 .
(17.3 ?)
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We can then calculate the basic field commutator essentially as done for the Klein–
Gordon equation in Schwartz eqs. (2.92-3):

1
i [ψ

r(x), πs(y)] = [ψr(x), ψs†(y)]

=
∫ d3pd3q

(2π)6
1√

4ωpωq
ei(p·x−q·y)

×
∑

r,s

(
[arp, asq

†]ur(p)ūs(p) + [br−p, b
s
−q
†]vr(−p)v̄s(−p)−

)
γ0

=
∫ d3p

(2π)3
1

2ωp
eip·(x−y) [(γ0ωp − γ · p+m14) + (γ0ωp + γ · p−m14)

]
γ0

= δ3(x− y)14 .

(17.4 ?)

where we have used us†(q) = ūs(q)γ0 and the spin sums in eqs. (16.19). This is the
result expected from canonical quantization.

In a similar manner we find the mode sum for the field Hamiltonian, using eqs. (16.18-9)
(we skip the details):

H =
∫ d3p

(2π)3

2∑

s=1
ωp
(
Ns+

p −Ns−
p
)
, Ns+

p = asp
†asp , Ns−

p = bsp
†bsp . (17.5 ??)

But there is something terribly wrong with this expression, because Ns+ and Ns− are
positive operators:

〈ψ|N−sp |ψ〉 = 〈ψ|bsp
†bsp|ψ〉 = |bsp|ψ 〉|

2 ≥ 0 ,

and the same for Ns+
p . Indeed, asp and bsp satisfy the harmonic oscillator algebra, see

Lecture Notes 4, and hence Ns+
p and Ns−

p have eigenvalues n+ and n−, respectively,
where n± are integers. Thus the Hamiltonian of eq. (17.5 ??) have positive and negative
eigenvalues of arbitrarily large absolute magnitudes. This might not be a problem in
a free particle theory, we may just introduce a rule stating that Ns+ − Ns− ≥ 0 for
all physically accessible states. Since [H,Ns±

p = 0], this constraint is conserved by
the dynamics. But this no longer works for an interacting theory. Then we would
get transitions to arbitrary negative energy states, and we would be able to extract
infinitely much energy from any spin- 1

2 system, which is, of course totally unsatisfactory.
We actually have got back the original problem of the Klein–Gordon theory.

Dirac solved this problem in an imaginative way. At the time, only three elementary
particles were known, the electron, the proton and the photon. Of these, photons obey
Bose-Einstein statistics, and make no problems. But both electrons and protons were
known to be Fermions, and hence obey the Pauli principle. To implement this, Dirac
invented the particle-hole formalism which we discussed in Lecture Note 7, and then
introduced what we now know as the Fermi level as the vacuum state | 0 〉 defined by
N+s

p | 0 〉 = 0 for all p and s. He then postulated that all negative energy states are filled
in this state, which became known as the Dirac sea. The rest follows our discussion.
He predicted that excitations of the Dirac sea would appear as pairs of negatively and
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positively charged particles, the positive particles being holes in the Dirac sea. And
when Carl Anderson discovered the positron on 2 August 1932, his luck was made.
Actually, positrons had been seen in several earlier experiments, but these were not
correctly interpreted.

Although one can indeed construct the correctly quantized Dirac theory from the ap-
proach of Dirac, following closely the steps of Lecture Notes 7, we shall just represent
the modern approach, and postulate the basic commutation relations:

{arp, a
s
q
†} = {brp, bsq

†} = (2π)3
δ3(x− y)δrs ,

{arp, a
s
q} = {brp, bsq} = {arp

†, asq
†} = {brp

†, bsq
†} = 0 .

(17.3)

Furthermore, as we already know, the annihilation of a negative energy particle in the
Dirac sea is the same as creating a hole, which we shall now identify as an antiparticle.
WE could have done this by introducing new creation and annihilation operators for the
negative energy particles, as we did in eqs. (7.7), but we save some rewriting by noting
that if we substitute bsq ↔ bsq

† the anticommutator algebra in eq. (17.3) is unchanged.
After this switch, we define the vacuum state as:

arp| 0 〉 = 0; brp| 0 〉 = 0 . (17.4)

and the one-particle states by:

|p, r 〉 =
√
2ωp arp

†| 0 〉 = 0 , | p̃, r 〉 =
√

2ωp brp
†| 0 〉 = 0 , (17.5)

where the tilde over the p denotes an antiparticle. These states have the same normal-
ization as for the spin-0 states:

〈p, r|q, s〉 = 2ωp(2π)3
δ(p− q) , 〈p̃, r|q, s〉 = 0 . (17.6)

We also note that from eq. (17.3) it follows that
(
arp
)2=

(
brp
)2 = 0, which implements

the Pauli principle:

arp|p, r 〉 =
√

2ωp
(
arp
)2
| 0 〉 = 0 , brp| p̃, r 〉 =

√
2ωp

(
brp
)2
| 0 〉 = 0 . (17.7)

We can now write the field operator in the Heisenberg picture. It turns out to be slightly
more convenient to work with ψ̄ = ψ†γ0. Changing the integral over p → −p in the
antiparticle part, we find:

ψ(x) =
∫ d3p

(2π)3
1√
2ωp

2∑

r=1

(
arpu

r(p) e−ip·x + brp
†vr(p) e+ip·x

)
,

ψ̄(x) =
∫ d3p

(2π)3
1√
2ωp

2∑

r=1

(
brpv̄

r(p) e−ip·x + arp
†ūr(p) e+ip·x

)
.

(17.2′)

The most fundamental change to the theory is that the canonical commutation relations
are replaced by anticommutator relations for fermions. They are calculated along the
same lines as before:

{ψa(x), ψb†(y)} = δ3(x− y) δab , {ψa(x), ψb(y)} = {ψa†(x), ψb†(y)} = 0 . (17.8)
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Here a and b runs over 1 . . . 4, i.e. both over particle and antiparticle spins.

We can also find the Hamiltonian:

H =
∫ d3p

(2π)3

2∑

s=1
ωp
(
Ns+

p +Ns−
p
)
, Ns+

p = asp
†asp , Ns−

p = bsp
†bsp . (17.9)

As shown in Lecture Notes 6, for Fermions the number operators Ns± only take on the
values n±p ∈ {0, 1}. Hence we now have that all the eigenvalues of H are positive, and
the state can be interpreted as that of a collection of an integer number of particles and
antiparticles. The momentum operator can be calculated in the same way:

P =
∫ d3p

(2π)3

2∑

s=1
p
(
Ns+

p +Ns−
p
)
. (17.10)

It remains to find the propagators. We shall work with ψ̄, but since ψ† = ψ̄γ0, it is
trivial to find propagators involving ψ†, if needed. Before proceeding, we shall introduce
the standard notation:

/A = γµAµ , /A /A = 1
2{γ

µ, γν}AµAν = gµνAµν = A2 , (17.11)

for any 4-vector operator Aµ where we have used eq. (15.10b) and the symmetry. We
then find, using eqs. (16.19), (17.3) and (17.4):

〈0|ψa(x)ψ̄b(y)| 0〉 =
∫ d3p

(2π)3
1

2ωp

∑

s

usa(p)ūsb(p) e−p·(x−y)

= (i /∂ +m)ab
∫ d3p

(2π)3
1

2ωp
e−p·(x−y) ,

〈0|ψ̄b(y)ψa(x)| 0〉 =
∫ d3p

(2π)3
1

2ωp

∑

s

vsa(p)v̄sb(p) e−p·(y−x)

= −(i /∂ +m)ab
∫ d3p

(2π)3
1

2ωp
e−p·(y−x) .

(17.12)

Here (a, b ∈ {1 . . . 4}) are arbitrary spinor indices, which may or may not coincide with
the summation indices s.

Just like for the Klein–Gordon equation, we can now construct various Green’s functions
from these vacuum expectation values. The retarded Greens function (cf. Lecture Note
9) can be defined as:

SabR (x− y) = θ(x0 − y0)〈0|{ψa(x), ψ̄b(y)}| 0〉 . (17.13)

This is indeed a Green’s function for the Dirac equation:

(i /∂x −m)SR(x− y)

= iγ0δ(x0 − y0)〈0|{ψa(x), ψ̄b(y)}| 0〉+ θ(x0 − y0)〈0|{[(i /∂ −m)ψ(x)], ψ̄(y)}| 0〉

= iγ0δ(x0 − y0)〈0|{ψa(x0,x), ψb†(x0,y)γ0}| 0〉+ 0
= iγ0δ(x0 − y0) δ3(x− y)γ0 = iδ4(x− y)14 .
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Here we have used that ψ(x) is a solution of the Dirac equation and the basic anti-
commutator, eq. (17.8). It is clear that SR only propagate in the forward light cone,
x0 > y0, and hence is the retarded Green’s function. Furthermore, a now straightfor-
ward calculation shows that:

SR(x− y) = (i /∂ +m)DR(x− y) , (17.14a)

where DR(x) is the retarded Klein–Gordon Green’s function of eq. (9.2). Thus, the
momentum space Green’s function is simply:

S̃R(p) = ( /p+m)D̃R(p) = i
/p+m

p2 −m2 = i
/p−m

. (17.14b)

Here it is understood that the poles in the complex p0 planes have a small negative
imaginary part, which reflects the θ(x0 − y0) in eq. (17.13).

The Feynman propagator follows similarly, and one finds

SF (x− y) =
{
〈0|ψ(x)ψ̄(y)| 0〉 for x0 > y0

−〈0|ψ̄(y)ψ(x)| 0〉 for x0 < y0 = 〈0|T{ψ(x)ψ̄(y)}| 0〉 . (17.15)

where the Fermionic time-ordered product includes an extra minus sign whenever two
fermionic operators are commuted. This rule is applied recursively for products of
several fermionic operators. Proceeding exactly as in the Bosonic case, one finds that
the Feynman propagator in momentum space is:

S̃F (p) = ( /p+m)D̃R(p) = i
/p+m

p2 −m2 + iε = i
/p−m+ iε , (17.16)

with poles at p0 = ±(ωp + iε).
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