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The Dirac equation

In 1939 Eugene P. Wigner was able to find and classify the irreducible representation
of the Poincaré group. To do this, he had to identify a set of commuting Hermitean
operators constructed from the generators of the group, such that all the group gener-
ators transform the eigenvectors of these operators among themselves. Such operators
are called Casimir Operators. In contrast to the rotation and Euclidean groups, where
the Casimir operators can be chosen as P2 and J2, this turned out to require represen-
tations with an infinite number of basis vectors, so all the unitary representations of the
Poincare group are infinitely dimensional, except for the trivial (scalar) representation,
if we disregard the discrete transformations of space inversion and time reversals for the
moment.

To do this, Wigner first had to find a suitable set of operators which commute with
all the generators of the group. One simple such operator is M = P 2 = P 02 + P2.
Thus the eigenvalues of this operator, the mass squared, m2, can be used to classify
the irreducible representations. Another fairly simple operator is the “energy sign”
operator, E = P 0/|P 0| if P 2 > 0. In addition a Casimir operator characterizing the
spin of the system is clearly needed, but J2 does not work, since from eq. (14.16) one
has:

[J2,Ki] = Jj [Jj ,Ki] + [Jj ,Ki]Jj = iεjik
(
JjKk +KkJj

)

= −iεijk
(
2JjKk − iεkjlKl

)
= 2
(
Ki − i(J×K)i

)
6= 0 .

(15.1)

To find the missing operator(s), we use that a Poincaré transformation is represented
by an operator of the form:

U(ωµν , a) = U(β,φ, a) = e−iaµPµ eiωµνMµν

. (14.22)

Here Mµν are the six generators of the Lorentz group, parameterized by ωµν .

M0k = −Mk0 = Kk , Mkl = εklmJ
m ; ω0k = −ωk0 = 1

2β
k , ωkl = 1

2εklmφ
m .

(14.20− 21)
It can be verified that Mµν and ωµν indeed transform as tensors under the Lorentz
group, so ωµνMµν is a scalar, which is useful when transforming the group parameters
ωµν between different coordinate systems. In order for eq. (14.22) to be a unitary
transformation, the Mµν must be Hermitean. Wigner exploited that it is possible to
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introduce a covariant spin-vector, called the Pauli–Lubanski, or Bargmann–Wigner, spin
vector, which is a genuine 4-vector:

ωµ = 1
2εµναβP

νMαβ , ωµ = [P · J, P 0J + P×K] . (15.2)

Here εµναβ is the Levi-Civita tensor of the Lorentz group, normalized to ε0123 = 1 =
−ε0123. An explicit calculation shows that the square of ωµ commutes with all the
generators of the Poincaré group. Since this is a scalar, it can be evaluated in the
rest-frame, where Pµ = [m, 0, 0, 0]. If m > 0 we find:

W = −ωµωµ = m2J2 = m2s(s+ 1) , (15.3)

where we have used that in the rest frame we can use the Lie algebra of the rotation
group to find the irreducible representations.

Wigner then showed that the operators M , W and E suffices to characterize all unitary
irreducible representations of the Poincare group. All these representations, except for
one, is infinite-dimensional, because each of them contain base vectors with arbitrary
continuous momentum labels. They fall into 6 distinct classes as follows:

I M = m2 > 0, E = ε = 1. This class describes massive particles. They can further be
classified by the spin, W = m2s(s + 1), with s integer for true representation, half
integer for projective representations, a property inherited from the rotation group.
Furthermore, there are 2s+ 1 possible eigenvalues for J3.

II M = m2 > 0, E = ε− 1. This class is isomorphous to class I, and can be mapped to
it by an additional discrete transformation. It may be used to describe antiparticles.

III M = m2 = 0, E = ε = 1, Pµ 6= 0. This class describes massless particles. W = 0,
but is not needed. The irreducible representations have only 2 spin states, with
eigenvalues of J3 = ±s, except for s = 0, which has only one spin state. Again an
integer s yields a true representation, a half integer s a projective representations.

IV M = m2 = 0, E = ε = −1, Pµ 6= 0. Isomorphous to class III (cf. class II).

V Pµ = 0. This class describes vacuum. It only has a trivial (scalar) representation.

VI M = m2 < 0. This class describes tachyons. This class describes particles which
always move faster than light. It does not seem to be relevant for physics.

One can now continue to construct the representation and the group generators. We
shall not do this, because many different equivalent ways of writing them is possible,
corresponding to the possibility of making unitary transformations on the basis states.
However, for the classes I–IV one can always choose a representation so that J retains
its well-known form J = L + S = X×P + S, where X = i∇p. One fairly simple form
for K is Shirkov’s form:

K = P 0 X−P t+ ε
P× S
ωP +m

(15.4).

The momentum derivatives appearing through X in these expressions show that these
operators connect states of different momenta, which is what makes the representation
infinite-dimensional. The first part of eq. (15.4) is analogous to L = X×P. Indeed, if
we extend the canonical quantization procedure pi = i∂i = −i∂i = −i∂/∂xi, to the time
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domain, with i∂0 = P 0, which is nothing but the Schrödinger equation when applied to
a wavefunction, we see that the spatial part of Mµν takes the form

Lµν = i(xµ∂ν − xν∂µ) . (15.5)

which indeed is the correct generator for Lorentz transformations of classical space time
functions.

These unitary representattions of the Poincaré group can be used to construct theories
of free fields for any spin. However, such explicit constructions have proven of limited
usefulness, because it has proven impossible extend this to renormalizable quantum
field theories of spin higher than 1 (or 3/2 if we include supersymmetric theories). Of
the useful theories, we have already discussed the spin-0 Klein–Gordon theory in some
detail, including the massless case, while the massless spin-1 theory is just the quantized
Maxwell theory. The massive spin-1 theory is discussed in some detail in Schwartz, ch.
8. Also the important spin- 1

2 Dirac theory had was found before Wigner’s analysis of
the Poincaré group. Thus, although the form of these theories can be deduced from
group theory, and this is indeed more or less what Schwartz does, it is in practice more
efficient to guess the form, and verify with group theory that it really is a relativistic
theory of well defined spin.

This is more or less what Paul A. M. Dirac did in 1928. He was really searching
for a relativistic wave equation which, unlike the Klein–Gordon equation, does not
have negative energy solutions. He realised, along with several others, that although
this poses no problem for a free theory, the introduction of interactions would lead to
predictions of transitions between positive and negative energy states, which appeared
to destroy the stability of the theory, and seemed to make no sense at the time. Dirac
therefore tried to find a theory with only a first order time derivative, just like the non-
relativistic Schrödinger equation. To be relativistically invariant, it should then also be
linear in the momenta. He realized that this could be obtained by allowing for wave-
functions which had several components, i.e. are vectors, ψ, in some finite-dimensional
internal vector space, describing some internal degree of freedom. He thus found the
Dirac equation, written in Hamiltonian form as:

i∂tψ = HDψ = (αiP i + β m)ψ = (1i α
i∂i + β m)ψ , (15.6)

where αi and β are Hermitean matrices. In order for the Klein-Gordon equation to be
satisfied for each component of ψ, he required (P 0 = HD):

P 02
ψ = (αiP i + βm)2

ψ (15.7)

=
[
1
2
(
αiαj + αjαi

)
P iP j +

(
αiβ + βαi

)
P i + β2m2

]
ψ =

[
P2 +m2]ψ .

Here we have symmetrized the product of α’s in front of P iP j , because the antisymmet-
ric part cancels automatically. For this equation to be satisfied for any ψ, the matrices
αi and β must satisfy the anti-commutator algebra:

{αi, αj} = αiαj + αjαi = 2δij , {αi, β} = αiβ + βαi = 0 , β2 = 1 . (15.8)
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As a matter of fact, it has turned out that the Dirac equation is not a fully satisfac-
tory quantum mechanical equation, although it has proven quite useful in relativistic
atomic and nuclear physics. Indeed, it did not really even get rid of the negative energy
solutions. However, as a field equation it has proven extremely successful, including
describing leptons and quarks in the Standard Model.

Instead of the Hamiltonian form of eq. (15.6), the Dirac equation can also be written
in a covariant form:

(γµPµ −m) = (iγµ∂µ −m)ψ(x) = 0 . (15.9)

where the Dirac gamma-matrices are defined as:

γ0 = β , γi = βαi , (15.10a)
{γµ, γν} = 2gµν1n , (15.10b)

with n as the number of components of ψ.

It remains to find matrices that satisfy the algebras of eqs. (15.8) or (15.10). If we
restrict ourselves to three space dimensions, eq. (15.10) reduces to:

{γi, γj} = −2δij1n , (15.11)

This algebra is satisfied by the matrices γi = iσi for n = 2, according to the anti-
commutator of the Pauli matrices σi, see eq. (13.16). But this algebra cannot be ex-
tended by a fourth matrix for n = 2, there is no fourth 2× 2 matrix that anti-commute
with the Pauli matrices. But Dirac found a solution for n = 4, a solution that can be
written in block form as:

γ0 =
(

12 0
0 −12

)
, γi =

(
0 σi
−σi 0

)
. (15.12)

This representation, which was long the most popular one, is by far not unique, it
turns out that all solutions of eq (15.10b) are unitarily equivalent. Modern textbooks,
including Schwartz, prefer another representation, the Weyl, or chiral, representation:

γ0 =
(

0 12
12 0

)
, γi =

(
0 σi
−σi 0

)
. (15.13)

Now it turns out that for any set of matrices satisfying eqs. (15.10) (it turns out that n
must be a multiple of 4), if one defines:

Sµν = i
4 [γµ, γν ] , (15.14)

one can verify that Sµµ satisfies the Lie algebra of the Lorentz group, written in the
form of eq. (14.22). In the Weyl representation, the generators for boosts and rotations
are, respectively:

S0i = i
4
[
γi, γ0] = −i2

(
σi 0
0 −σi

)
= −S0i† ,

Sij = i
4
[
γi, γj

]
= 1

2εijk
(
σi 0
0 σi

)
= 1

2εijkS
k = Sij

†
.

(15.15)
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WE see that Sij is Hermitan, but S0i is anti-Hermitean. Here ğk are the spin matrices
of the Dirac theory. It is evident that this representation of the Lorentz group is
reducible, since the generators are in block diagonal form. It is also clear that each
block is 2-dimensional, so 2s + 1 = 2, or s = 1

2 , so the Dirac equation describes spin- 1
2

particles. Finally, and this looks like a serious problem, the boost generators, S0i are
not Hermitean — if they were, we would have a counter example to our statement that
there are no non-trivial finite-dimensional unitary representation of the Lorentz group.

Internal vectors ψ, transforming according to the spin- 1
2 representation of the Lorentz

group, are called spinors. Those transforming according to this doubled 4-dimensional
representation are called Dirac-spinors. Under a finite Lorentz transformation, Λ, they
transform as ψ → ψ′, where, in agreement with eq. (11.8b):

ψ(Λx) = D(Λ)ψ(x) , D(Λ) = e−
i
2ωµνS

µν

, (15.16)

The operators must transform with the inverse transformation matrix, cf. eq(12.1), so;

γ′µ = D−1(Λ)γµD(Λ) = Λµνγ
ν , (15.17)

which can be verified by an explicit calculation, e.g. using the Hausdorff–Campbell–
Baker formula, eq. (14.7). This means that γµ is indeed a 4-vector and hence γµxµ
is a Lorentz scalar, and since the Dirac equation is trivially translation invariant, it is
Poincaré invariant.

To find a Lagrangian for the Dirac equation, we need to form a Lorentz scalar from the
spinors. Now Sĳ is Hermitean, so (D(R)ψ)† = ψ†D−1(R) for a rotation, and ψ†ψ is a
scalar under rotation, But this is not so under a boost, Λ, since S0i is anti-Hermitean,
so ψ†ψ is not Lorentz invariant. This problem is solved by introducing ψ = ψ†γ0. From
eqs. (15.13) and (15.15), we find that γ0Sij = Sijγ0, but γ0S0i = −S0i. We then have:

(
ωµνS

µνγ0)†γ0 =
(
ωijS

ij − 2ω0iS
0i) γ0 = γ0 (ωijSij + 2ω0iS

0i) = γ0(ωµνSµν) .

We can then commute γ0 past each term in the series expansion forD(Λ). Remembering
the factor i in the exponent of D(Λ) and that Λ−1(ωµν) = Λ(−ωµν), we find:

ψ′ψ′ = ψ†D(Λ)†γ0D(Λ)ψ = ψ†γ0D(Λ−1)D(Λ)ψ = ψψ . (15.18)

We can then write down the free Lagrangian for the Dirac field:

L = ψ(iγµ∂µ −m)ψ , (15.19)

Variation with respect to ψ (or ψ†) immediately yields the Dirac equation, eq. (5.9),
as the Euler–Lagrange equations. Variation with respect to ψ yields the Hermitean
conjugate equation:

−i∂µψγ
µ −mψ = 0 .
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