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Lorentz and Poincaré transformations

In the previous notes we discussed the rotation group. If we add the translations, we
obtain the 3-dimensional Euclidean group. We already know from classical mechanics
that a free point particle, which by definition has no properties, and so transforms as
a scalar (s = 0) under rotations about its own position, in general has a conserved
orbital angular momentum L = X x P when moving through space. When we quantize
the theory, we find from [X? PJ] = id;; that the components of the orbital angular
momentum operator satisfy the Lie algebra of the rotation group, eq. (12.16):

(L, L7] = ie;, LF . (12.17)

L operates on space time coordinates, and in standard spherical coordinates r, 0, ¢ we
have the following operator expressions:
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Since the L%’s satisfy the rotation group Lie algebra, the eigenvalues of L? must be
of the form I(I + 1), with integer or half integer values for I, and L? has eigenvalues
m € —l,—l+1...1. But it is a well known result of the theory of differential equations
that L2 only have normalizable eigenfunction for integer I. These eigenfunctions are the
well known spherical harmonics, Y;™(0, ¢). Their normalized form with the Condon-
Shortley phase convention most commonly used in quantum mechanics is:

Y0, 6) = (0, 6|1, m) \/214; L 8; m; Pl (cos 0)em { <1 D™ "= 8 (14.2)

Here P/™(cos#) is an associated Legendre polynomial, which is a polynomial in cosé
and sin 6.

For a particle with spin, the orbital angular momentum operator L acts on the spatial
basis vectors |6,¢) or |l,m;), while the spin operator, S, acts on the internal spin
states, with basis vectors |s,ms ), so [L,S7] = 0. Thus, the composite system can
be described in the direct product basis {|l,m; )| s, ms )}, disregarding other degrees of
freedom. But, as noted in the previous lecture, this is not irreducible under rotations.
According to eq. (13.26), these states can be expanded in Clebsh—Gordan series as:
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Here, the basis states | j,m; ) are eigenstates of the total angular momentum operators
J?2 and J3:

J:L+Sa J2|jam3>:]<]+1)a J3|jam3>:m]|]am]> (144)

Note that the Clebsh—Gordan series contains contributions from total angular momenta
|l — s| <j <1+ s. Since the Lie algebra is unchanged, the subgroup of rotations under
the Euclidean group is still Abelian, so the transformation operator in the Euclidean
group reads (cf. egs. (12.9) and (13.4)):

U(p,a) = 2P ei®J (14.5)

But beware that the parameterization depends on the ordering of the non-commuting
operators (see below). The last basic commutator of the Euclidean group is [J?, P7].
Since S is independent of space variables, we have:

[J%, PI] = [L?, P7] = ¢;3[X*, PI]P' = ie;3,01,; P" = i€ P, (14.6)

which expresses that P transforms as a vector under rotations. In the same way we also
find [J, X7] = ie; ;. X"

To recover the formulas finite transformations from a Lie algebra, we can use a form of
the Baker—Campbell-Hausdorff or iterated commutator formula, which can be written
for any matrices or operators A and B:

_ A" n
A A =N - (B, A]™ (14.7)

Here A and B are operators, and [A, B] (") is an iterated commutator, defined recursively
by:
B,A]Y =4, [B,AY =B, 4],

e oy ) (14.8)
[B, A] [B,[B, A" ] =[B,[B,...[B,A]...]].

Now the rules of manipulating functional series are essentially the same as those for
analytical functions, except that we must respect the commutation relations. Of course,
the series on the right hand side must converge to be useful, but for our purposes this is
not a problem, since we shall always be able to sum it — in many cases it is even finite.
This is really a combinatorial result, but an analytical proof, although more restrictive,
is simpler. We define an operator-valued function as:

fO)=eraeP — ()= % =M (BA - AB)e P = B [B, Ale B

We can then prove by induction that f(™()\) = e*?[B, A] (M) e=AB , because making this
assumption, we find:

f(n—l—l)()\) _ e)\B[B7 [B7A](")]6—AB — eAB[B,A](TH—l)G_/\B.



Since the formula is valid for n = 0, it follows by induction for all n. Eq. (14.6) is then
an immediate consequence of Taylor’s theorem:
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provided the series converges, which is eq. (14.6).

To see how we use this formula, let us apply it to find the transformation properties of
J under translations. From the translation law of operators, eq. (12.1) (note the placing

of UT!): N
Jl = U(O7a)TJZ U(O,a) e, =e; Z % [CLJPJ7 Jl](n) .

n

But from eq. (14.6) and [P*, P7] = 0:

[a? PI, J'| = —iejina’ PF = i(a x P)",

(2) _

@ P?, 1% = [P i(a x P)] = 0 = [/ P7, ]

forn>2.

Thus the whole infinite series has only two non-vanishing terms, and we have:
J =U(0,a)'JU(0,a)e; =T +axP. (14.9)

This yields a group theoretical proof of the formula J = L 4+ S: Consider a rotational
invariant system at a fixed point, where J = S, as found in lecture notes 13. Then
introduce translations and translate the system from the origin to a = x. Similarly one
finds, not unexpectedly, that P and J transform as vectors under rotations. We must
also beware that since the operators do not commute, the parameterization in eq. (14.5)
depends on the operator order:

Ulp,a) = pa P DT _ iI —ip-T iaP i} _ i@-T iaP _ ei¢~Jeia”~P’ (14.10)

where P* = R PJ and we have used the invariance of the scalar product under rotation
to write a- P’ = a” - P where /' = (R™")"a/ = o/ R'".

We now turn to the Lorentz group. It has two types of elements, the rotations, which
forms a subgroup, which we have already analyzed, and the boosts, transformations that
change the velocity. From the course in classical mechanics, we already know that the
boosts do not form a subgroup, because the product of two boosts in different directions
is not a pure boost, but involves a rotation (see Goldstein, sec. 7.3). In discussing boosts,
it is useful to introduce the rapidity, 3, as a parameter. If v is we have 3 = artanh(v). To
see why, it suffices to consider a boost in the 3-direction in the defining, or fundamental,
representation of the group. We then have the boost matrix (see S eq. (2.14)):

v 0 0 v coshg 0 0 sinhpg
3;m | O 1 0 0| 0 10 0
Y@= 05 0]~ 0o o1 o0 (14.11)
yvo 0 0 sinh 0 0 coshf



This matrix has eigenvalues €®, 1, 1,e77, i.e. the same as the corresponding rotation ma-
trix, except that there is one dimension more, and, more importantly, that the rotation
angle has become imaginary. We can still diagonalize A3:

23(8) = V71 A3(B)V = Diag[e?,0,0,e7"]. (14.12)

But since A3 is neither Hermitean, nor unitary, the matrix of eigenvectors, V', is not a
unitary matrix:

: (14.13)
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From the diagonal form of the matrix it is trivial to verify that boosts in the 3-direction
are additive in rapidity, and hence form an Abelian subgroup of the Lorentz group:
X3(81)% 3(B2) = X3(B1 + B2). By transforming back this is true also for A3, and any
other representation obtained by a similarity transformation. And since the choice of
3-axis is arbitrary, this is true for boosts in an any direction. But it turns out that it
is impossible to find a transformation that transforms all the representation matrices
into unitary matrices. And that is not only true for the defining representation, but for
representations of any dimension larger than 2: There are no finite-dimensional unitary
representations of the Lorentz group, except for the trivial one. This turns out to have
important consequences for the structure of relativistic quantum field theories.

Nevertheless, it is useful to consider the generators the Lorentz group. An arbitrary
Lorentz transformation can be parameterized by a rotation vector, ¢ = ¢n, describing
rotations about an axis n, and boosts, 3 = fe, describing velocity changes of rapidity
B in the direction e. A general transformation can thus be written A(8,¢). The
generators for rotations are unchanged, except for getting a trivial extension for the
time coordinate. Following the convention of writing J* for the rotation generators of
the Lorentz group, egs. (13.2a) become:

10 0 0
g—|"Y (13.2')
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For boosts the generators are:
K= —i(w) . (14.14)
96 ) B=o.¢p=0
This yields:
0100 00 10 00 0 1
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This shows explicitly that the K’s are not Hermitean, and hence not observables, al-
though they are symmetric, and iK* are Hermitean. The commutator relations involving
J* are, of course unchanged. For those involving the K*’s we find:

[J%, K9] = e K* (K, KI] = i J* . (14.16)

The first of these shows that K actually transforms like a vector under rotations, which
could be expected. The second reflects the fact that two boosts in different directions
do not commute, and generate a rotation, as noted above. Since [J3, K3] = 0, we
could now proceed to generate finite dimensional representations of the Lorentz group
by extending the construction for the rotation group, but as these representations are
not unitary, they are of a somewhat restricted usefulness.

Since K is a vector and we have found that boosts in a fixed direction form an Abelian
subgroup of the Lorentz group, we can write any boost in the defining representation
as:

A(B,0) = eBXK. (14.17)

As noted, this operator is not unitary, and so of restricted usefulness for quantum
systems.

We can finally attack the full Poincaré group, by adding the translations. These will
now include the time translations, which looks like the spatial translations, although it
is rather special in that it is parameterized by pY, the eigenvalue of the Hamiltonian
for a non-interacting particle. Although it is irrelevant for the translations alone, when
we combine the translations with the Lorentz transformations, we switch the sign of
the energy phase relative to the spatial terms, on order to have a Lorentz scalar in the
exponent, e P? with p- 2 = plz, = p2° —p - x.

From the composition law of Poincaré transformations, eq. (11.7): ' = Az + a, one can
work out the remaining commutators of the Poincaré group, which are:

[P* P"] =0, [K', P°] =iP", (K", P =i, P°. (14.18)

The second of these equations tells us that a boost changes the momentum, the last
that when it changes the momentum in the direction of motion, the energy changes, but
when the change in velocity is perpendicular to the momentum (since then the work
vanishes).

In summary, any Poincaré transformation on a physical system can be performed by a
unitary transformation, and from the above analysis we know that it must be writeable
as:

U(B, ¢,a) = e ianl” el ®J IPK , (14.19)

but we have not yet found a suitable Hermitean form for K. Again different operators
do not commute so the values of the parameters a*, ¢, B depend on the order of
the operators. In this case the situation is actually worse than for the rotation group,
because the combinations ¢-J and 3-K are scalars under rotations, but have non-trivial
transformation properties under boosts. This can be taken care of by introducing a new
set of generators, written as an antisymmetric tensor, M* = —M"#  defined by:

MOk — _MkO — Kk, Mkl — eklme ) (1420)
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This construction is analogous to the formation of F*¥ from E and B in electromag-

netism. The corresponding transformation parameters are w#” = —w"*:
1 1
0k kO k ki
w = —w = 55 , w" = §6klm¢m-

Then one can write:
U, a) = U(B, ,a) = e~ el M

Here w,,,, M*¥ transforms as a scalar under Lorentz transformations.

(14.21)

(14.22)

Expressed in terms of M*” and P* the Lie algebra of the Poincaré group can be written:

[MHY MP) = i(gho MYP — gHP MY + g"P MM — g¥" MHP)

M.UV, PP =1 ’/Pf);u _ P«PPV ,
g g
[PH, PY] = 0.

(14.23a)
(14.23b)
(14.23c¢)



