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Representations of the rotation group

To illustrate the results of lecture note 12, we shall work out the commutator algebra
for the rotation group, SO(3), bu considering the defining representation, as 3× 3 real
orthogonal matrices R(φ), which is a particular case of a unitary transformation. In
order to calculate Si, eq. (12.15) shows that it suffices to consider rotations about the
coordinate axes:

R(φ1e1) =




1 0 0
0 cosφ1 − sinφ1
0 sinφ1 cosφ1



 , R(φ2e2) =




cosφ2 0 sinφ2
0 1 0

− sinφ2 0 cosφ2



 ,

R(φ3e3) =




cosφ3 − sinφ3 0
sinφ3 cosφ3 0
0 0 1



 . (13.1)

The generators then follow from T i = −i(∂R(φei)/∂φi)φ=0:

T 1 = −i




0 0 0
0 0 −1
0 1 0



 , T 2 = −i




0 0 1
0 0 0
−1 0 0



 , T 3 = −i




0 −1 0
1 0 0
0 0 0



 .

(13.2a)
We note that we have T2 = T 12 + T 32 + T 22 = 213. This quantity is thus an invariant
under rotation, since it commutes with all rotation matrices. Eq. (13.2) can be written
more compactly as:

T ijk = iεijk . (13.2b)

This makes it very easy to check the commutation relations, using εijkεilm = δjlδkm −
δjmδkl and the antisymmetry of εijk under permutations of the indices:

(
[T i, T j ]

)
kl

= −εikmεjml − εjkmεiml = δilδkj − δijδkl − δjlδki + δjiδkl

= δilδjk − δjlδik = −εmijεmkl = iεmijTmkl ,
(13.3)

showing that the structure constants of the group are indeed cijk = εijk, as stated in
eq. (12.16).

An important observation is that since the set of rotations around a fixed axis constitute
an Abelian group, we can actually immediately find a formula for finite rotations around
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a fixed axis. In that case we can immediately copy the analysis we did in lecture notes
12, and find:

R(φ3e3) = eiφ3T
3
=
∞∑

n=0

(iφ3)n

n! T 3n .

But for n > 0 we find:

T 32 =




1 0 0
0 1 0
0 0 0



 = T 32n
, T 32n+1 = T 3 ,

so we can evaluate the sum in eq.(13.4):

R(φ3e3) = 13 + iT 3
∞∑

n=0
(−1)n (φ3)2n+1

(2n+ 1)! + T 32
∞∑

n=1
(−1)n (φ3)2n

(2n)!

= 13 + iT 3 sinφ3 + T 32(cosφ3 − 1) =




cosφ3 − sinφ3 0
sinφ3 cosφ3 0
0 0 1



 .

(13.1′)

which is the correct result. But there is nothing special with the z-axis, and we might
habe performed the same manipulation for an arbitrary linear combination φ·T, obtain-
ing the formula for a finite rotation around any axis. Thus, knowing the generators, we
can, at least in principle, calculate the result of any finite transformation (cf. Goldstein
sec. 4.7). Furthermore, this means that we can write any rotation matrix as:

R(φ) = eiφ·T , (13.4)

where T = [T 2, T 2, T 3].

To apply the above formulas in quantum mechanics, it is very useful to have a represen-
tation where one of the generators, customarily one chooses T 3, to be diagonal, since
they represent physical observables. No transformation involving only real matrices can
bring T 3 on a diagonal form. But this is easily done by a unitary transformation. The
eigenvalue equation for T3 is simply:

Det (T 3 − λ13) = −λ3 + λ = 0 λ = −1, 0, 1 . (13.5)

The eigenvectors are easily found, and so T 3 can be diagonalized. We shall follow
tradition, calling the quantum mechanical generators of the rotation group for Si, and
reserving J i for the full Euclidean group, including the translations:

S3 = V †T 3V =




1 0 0
0 0 0
0 0 1



 V = 1
√
2




1 0 1
−i 0 i
0
√
2 0



 ,

(13.6)

S1 = V †T 1V = i
√
2




0 −1 0
−1 0 1
0 1 0



 , S2 = V †T 2V = i
√
2




0 −1 0
1 0 1
0 −1 0



 .
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We obviously still have S2 = 212.

The above shows the explicit construction of generators for the rotation group in its
defining, or fundamental representation. But based on the fundamental commutation
relations, one can find many other irreducible representations. Since [S2, S3] = 0, one
can construct a basis where these to operators are simultaneously diagonal. Since S2

commutes with all rotation operators, its value cannot be changed by a rotation, so σ
can be used to label the irreducible representations. Thus we introduce a basis {|σ,m 〉}
with the properties

S2|σ,m 〉 = σ|σ,m 〉 S3|σ,m 〉 = m|σ,m 〉 . (13.7)

Also, we note that if m is an eigenvalue of S3, we must have m2 ≤ σ from the definition
of S2. The trick is now to introduce the ladder operators, S± = S1 ± iS2. These
obviously commute with S2, but in addition it follows from the Lie algebra that:

[S3, S±] = ±S± =⇒ S3 (S±|σ,m 〉
)
= (m± 1)

(
S±|σ,m 〉

)
. (13.8)

Hence we must have S±|σ,m 〉 = c±(σ,m)|σ,m ± 1 〉 for some constants c±(σ,m).
Furthermore, since

S±S∓|σ,m 〉 =
(
S12 + S22

∓ i[S1, S2]
)
|σ,m 〉 =

(
S2 − S32

± S3
)
|σ,m 〉

= (σ −m2 ±m)|σ,m 〉 .
(13.9)

This tells us that when we go up and down the ladder, increasing and decreasing m,
we will always come back to the same states. Thus, there is only one state for each m
which is connected to other states by the generators. Now we have already noted that
m2 ≤ σ. This means that if σ is finite, there is a maximal m, which we shall call s. For
m = s we must then have S+|σ, s 〉 = 0. From eq. (13.9) this leads to:

0 = S−
(
S+|σ, s 〉

)
= (σ − s2 − s)|σ,m 〉 =⇒ σ = s(s+ 1) . (13.10)

In an analogous manner we find that when σ is finite, there is some minimum m = −s′
such that S−|σ,−s′ 〉 = 0, implying σ = (−s′)(−s′ − 1) = s′(s′ + 1), so we must have
s′ = s. Furthermore, successive applications of S+ takes us from m = −s to m = s in
steps of 1, so 2s+1 must be an integer, i.e. s must be integer or half integer. Thus, the
Lie algebra of the rotation group has representations of any integer dimension, labeled
by an integer or half integer s, and containing 2s + 1 states with m = −s . . . s. The
defining three-dimensional representation corresponds to s = 1.

But we have not proven that all this representation of the algebra also gives rise to
an acceptable representation of the group. To do this, we must find the generators of
the representations explicitly. This is actually fairly straightforward. We shall later be
particularly interested in the case s = 1

2 , so let us perform the construction in this case.
We then have only two basis vectors for the irreducible representation, which can be
taken to be:

| 1
2 ,

1
2 〉 =

(
1
0

)
, | 1

2 ,− 1
2 〉 =

(
0
1

)
. (13.11)
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Since S3 should be diagonal, with eigenvalues ± 1
2 , we have:

S3 = 1
2

(
1 0
0 −1

)
. (13.12)

To find S1 and S2, we exploit that since S± are ladder operators, they can be written,
up to constants, as:

S+ =
(
0 1
0 0

)
, S− =

(
0 0
1 0

)
;

(13.13)

S+
(
1
0

)
= 0 , S+

(
0
1

)
=
(
1
0

)
, S−

(
1
0

)
=
(
0
1

)
, S−

(
0
1

)
= 0 .

We find S1 and S2 as:

S1 = 1
2
(
S+ + S−

)
= 1

2

(
0 1
1 0

)
, S2 = 1

2i
(
S+ − S−

)
= 1

2

(
0 −i
i 0

)
. (13.14)

These generators are mostly written in terms of the Pauli matrices, σi, as:

Si = 1
2σ

i . (13.15)

We have even obtained them in their standard form. They satisfy Traceσi = 0 and the
simple algebra:

σiσj = δij12 + iεijkσk ⇐⇒ [σi, σj ] = 2iεijkσk, {σi, σj} = 2δij12 . (13.16)

The commutator relation here of course just reflects the Lie algebra. We then find the
group transformation matrices for the s = 1

2 representation in the same manner as for
the fundamental representation, eqs. (13.1’), using σi2 = 12:

D
1
2 (φe3) = e

1
2φσ

3
= 12 cos

(
φ

2

)
+ iσ3 sin

(
φ

2

)
=
(
ei 1

2φ 0
0 e−i 1

2φ

)
. (13.17a)

The corresponding result for an arbitrary rotation with φ = φn is then:

D
1
2 ((φ)) = e

1
2φn·σ = 12 cos

(
φ

2

)
+ in · σ sin

(
φ

2

)
. (13.17b)

In particular, from this result we see that for φ = 2π, we have

D
1
2 (2πn) = −12 (13.18)

independently of the rotation axis, n. Thus the s = 1
2 representation is not a true

representation of the rotation group, but only a projective representation. We have
thus found that a representation of the Lie algebra is not necessarily a representation
of the group it is derived from.
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The above construction can be carried through for any s. One chooses S3 = Diag(s, s−
1 . . .− s), For S+ one can pick a matrix with the only non-zero elements being one’s in
the positions one step above the main diagonal, times some constant, and then chose
S− = S†. From this S1 and S2 are calculated as in eq. (13.14), and the remaining
constant chosen so the Lie algebra is fulfilled. Finally, the representation matrices are
obtained like in eqs. (13.17), although the actual expressions become more cumbersome
for s > 1. We will discover that for a full rotation, φ = 2π about any axis, we have:

Ds(2πn) = (−1)2s12s+1 . (13.19)

Thus we only have a projective representation for half integer s. But for integer s all
representations are true. Thus we recover the well known result that the finite dimen-
sional irreducible unitary representation of the rotation groups ore of odd dimensions,
while there are even-dimensional projective representations.

A wavefunction which can be written as:

|ψ 〉 =
s∑

m=−s
ψα;s
m |α; s 〉| s,m 〉 (13.20)

(no sum over s) in the notation of the lecture notes 12, is said to transform according
to an irreducible representation of the group, only components with different m’s are
mixed by a rotation. Similarly, an operator with 2s+ 1 components Osm, transforming
as:

U(φ)T smU(φ)† =
s∑

m′=−s
T sm′D

s
m′m(φ) , (13.21)

is said to transform under the s-representation.

Just like we did for translations, we can construct wavefunctions for the simplest pos-
sible quantum system with three-dimensional rotational invariance, a sphere fixed at
some point since we have not considered translations. This will indeed be a model of a
spinning sphere, and if we calculate the angular momentum operators, J, from Noether’s
theorem, we will indeed find that J = S, so we can identify S with the intrinsic angular
momentum, or spin. We call s and m the spin quantum numbers, and from the postu-
late that elementary particles must transform according to irreducible representations
of the relevant symmetry groups, we conclude that elementary particles must transform
according to some group representation labelled by s. We might add here that it math-
ematically there is nothing inconsistently with σ = ∞, i.e. representations of infinite
spin with infinitely many values of m. But they are very hard to interpret physically,
and no use of them has cropped up in physics so far.

We have to add some comments of other representations of the rotation group. In
classical mechanics we hardly ever encounter the irreducible representations constructed
above, except for the cases s = 0, scalars, and s = 1, which is the vector representation.
For more complicated cases we use tensors. A tensor under the rotation group of rank
m transforms under a rotation as:

T ′i1...in = Ri1j1 . . . RinjnTj1...jn . (13.22)
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This is not a linear transformation at all for n > 1, or so rather unsuitable for quantum
mechanical use, although it is perfectly find for operators. Furthermore, it does not
even represent a single irreducible representation in the general case. This is easily seen
for n = 2, in which case Tij is simply a matrix. We know that a general matrix cam
always be split in it symmetric and antisymmetric part:

T = TS + TA = 1
2(T + TT) + 1

2(T − T
T) . (13.23)

where TT is the transposed matrix. Since rotations do not mix the two parts, they
transform under independent irreducible representations. Indeed the antisymmetric
part is equivalent to a vector, which is easily constructed using the Levi-Civita tensor:

Ti = εijkT
A
jk = εijkTjk ⇔ TAij = εijkTk . (13.24)

where we have used that εijkTSjk = 0. Thus the antisymmetric part transforms as a
vector (s = 1), and so is irreducible. But the symmetric part is still reducible, because
its trace is invariant under rotations, and so transform as a scalar, s = 0, T ′ii = Tii. The
remaining part forms a traceless symmetric matrix,

TTij = TSij −
1
3δijTkk . (13.25)

This has 5 independent components, and transforms under the s = 2 irreducible repre-
sentation. This representation is therefore sometimes referred to as the tensor represen-
tation of the rotation group. One easily checks that the number of parameters is correct:
A 3 × 3 matrix has 9 independent components, and 9 = 1 + 3 + 5. We shall, however,
not work out the detailed mapping from tensor components to the spin eigenstates.

A last very important issue which we will only mention is the transformation properties
of composite states. If we have two states, say | s1,m1 〉 and | s2,m2 〉, how does the
composite system | s1,m1 〉| s2,m2 〉 transform. Such combinations are very important,
i.e. when we combine electronic wavefunctions in an atom or a solid, nucleons in a
nucleus, or quarks in a nucleon. The answer is given by the Clebsh–Gordan series,
which states that the direct product of the two states expands as:

| s1,m1 〉| s2,m2 〉 =
s1+s2∑

j=|s1−s2|

j∑

m=−j
〈s1s2m1m2|s1s2jm〉| j,m 〉 . (13.26)

The coefficients 〈j1j2m1m2|j1j2jm〉 are known as the Clebsh–Gordan coefficients. There
is a vast literature about them, and their generalizations. The main point to remember is
that the direct product of two representations give rise to states transforming according
to all irreducible representations between |s1−s2| and s1 +s2. The corresponding result
for the representation matrices themselves is:

Ds1
m′1m1

(φ)Ds2
m′2m2

(φ)

=
s1+s2∑

j=|s1−s2|

j∑

m,m′=−j
〈s1s2m1m2|s1s2jm〉〈s1s2m

′
1m
′
2|s1s2jm〉D

j
m′m(φ) .

(13.27)

6


