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Some group theory

In lecture note 11 we found that under a symmetry transformation, S, of space x →
x′, leaving probabilities unchanged, the state |ψ 〉 and the wave function ψ(x) must
transform as:

|ψ 〉′ = U(S)†|ψ 〉 ; (11.2′)
ψ(x′) = U(S)ψ(x) , (11.8b′)

respectively, where U(S) is an unitary (anti-)linear operator on the Hilbert space, H.
Note in particular the difference in transformation law for the state and for the wave-
function. Furthermore, the symmetry operators must have the group property, i.e. in
particular is S1 and S2 are symmetry operations, so is S−1

i and S2S1, in standard nota-
tion. But because physical states are represented by rays in H, we cannot demand that
U(S2)U(S1) = U(S2S1), but only that:

U(S2)U(S1) = eiδ(S2,S1)U(S2S1) , (11.10′)

where δ(S2, S1) is a real function of the group elements S1 and S2. We say that the
set {U(Si)} forms a projective representation of the symmetry group, while if we can
choose the operators U(Si) such that δ(S2, S1) = 0 for all S1, S2, we just say that we
have a representation. This is the case normally considered in the mathematical theory
of group representations. Note that eq. (11.10’) remains valid in the case of internal
symmetries, with x′ = x.

In order for scalar products to remain unchanged, the transformation of eq. (11.2’)
corresponds to the operators transforming as:

O′ = U†(S)OU(S) . (12.1)

We note that when we apply this formula for S = S1S2, the phase δ(S2, S1) in eq.
(11.10’) drops out, so the operators always transform according to a (true) representa-
tion:

O′′ = U(S1)†O′U(S1) = U(S1)†U(S2)†OU(S2)U(S1) = U(S2S1)†OU(S2S1) . (12.2)

Note the switch in the order of the operators, which can be traced back to the manipu-
lations in eq. (11.6). This disappearance of the phase ambiguity for operators is actually
important when we consider canonical quantizations. This is derived from the Poisson
brackets of Hamiltonian dynamics (see lecture note 1), which means that the operators
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of classical mechanics and Quantum Mechanics have the same symmetry properties.
But in Classical Mechanics there is no room for the phases of a projective transforma-
tion. This, of course, also means that symmetry properties of quantal systems can be,
and often are, more complex than for classical systems.

The operator form of the transformation laws also lets us introduce transformation
laws in quantum field theories which include transformations of the time coordinate, in
particular Poincaré transformations, since in relativistic field theories space and time are
treated on an equal footing. Thus the relativistic version of eq. (11.8b) for a Poincaré
transformation x′ = Λx+ a reads:

O(Λx+ a) = U(Λ, a)O(x)U(Λ, a)† . (12.3)

In order to use the above formalism, we need to know how to find the operators U . This
is actually a large field, with separate textbooks. We shall just present some important
results. We shall also first consider true representations, with δ = 0 in eq. (11.10’), and
then come back to the extension to projective representations.

First we note that there is no requirement in quantum mechanics that the representa-
tion must be faithful, i.e. that different symmetry transformations are represented by
different operators. Thus any group has the trivial representation, U(S) = 1 for all ele-
ments, S, in the group. This representation obviously satisfies U(S2)U(S1) = U(S2S1),
and is called the trivial representation of the group. Quantities transforming according
to this representation transforms as ψ(x′) = ψ(x), are often called scalars in physics.

Before we continue, let us first observe that the eigenvectors of a unitary operator are
orthogonal, and hence can be assumed orthonormal. Indeed, if U is unitary, we have:

C = 1
2(U + U†) = C† S = 1

2i(U − U
†) = S†

[C, S] = 1
4i
(
[U,U ]− [U,U†] + [U†, U ]− [U†, U†]

)
= 0

U = C + iS U† = C − iS .

(12.4)

Thus, since U can be written as the sum of two commuting hermitean operators, which
can be diagonalized simultaneously, it is diagonalized with them, having the same eigen-
vectors. Furthermore, the eigenvalues are complex numbers of modulus 1, since:

U |λ 〉 = λ|λ 〉 =⇒ 1 = 〈λ|U†U |λ〉 = |λ|2 . (12.5)

Hence we have shown that one can always write U = eiH where H is Hermitean, because
we can write λ = eiφ, and define H by H|λ 〉 = φ|λ 〉.

From this construction an important result for Abelian groups, i.e. groups where all
elements commute, follows. Since for such groups U(Si)U(Sj) = U(Sj)U(Si) for all
Si, Sj , the matrices {U(Si)} all commute, and can be diagonalized simultaneously. Thus,
for an Abelian symmetry group, we can chose a basis in H such that the basis vectors
satisfy:

U(Si)|α; k 〉 = eiφi(k)|α; k 〉 . (12.6)

If S0 is the unit element in the group, we have the normalization φ0(k) = 0 for all k.
There will in general be several, or even infinitely many, states with the same k, and
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these are labelled by α and describes other properties of the system. In this basis group
multiplication is simply an addition, so if slSm = Sn, we find:

U(Sn)|α; k 〉 = eiφn(k)|α; k 〉 = U(SlSm)|α; k 〉

= U(Sl)U(Sm)|α; k 〉 = ei[φl(k)+φm(k)]|α; k 〉 ,
(12.7)

so φn(k) = φm(k)+φn(k). This is simply eq. (11.10’) applied to the basis vectors, with
δ = 0. Assuming that we have also orthonormalized the basis in the additional quantum
number(s) α, so 〈α′, k′|α; k〉 = δαα′δkk′ , we can write U(Si) as:

U(Si) =
∑

α′k′

∑

αk

|α′, k′ 〉〈α′, k′|U(Si)|α; k〉〈α; k| =
∑

α′k′

∑

αk

eiφi(k)|α′, k′ 〉δαα′δkk′〈α, k|

=
∑

k

eiφi(k)
∑

α

|α; k 〉〈α, k| =
∑

k

eiφi(k)Pk =
∑

k

Uk(Si)Pk . (12.8)

Here Pk =
∑
a |α; k 〉〈α, k| is simply the projection operator onto the subspace of fixed

k in H. Thus we have written U(Si) as the direct sum over such subspaces. This is
called a reduction of the unitary representation U(S) of the group to a direct sum of
irreducible representations, which are labelled by k, which is a quantum number to a
physicist. All the irreducible representations are of the form Uk(Si) = eiφ(k) for some
function φi(k) of i and k, which remains to be found. This is just a complex number,
so we have shown that for any Abelian group the unitary irreducible representations
are all one-dimensional. This is a special case of a fundamental result of the theory
of group representations, which states that any linear representation of a group can be
written as a direct sum of irreducible representations, like in eq. (12.8). The difference
for non-Abelian groups is that Uk(Si) will be matrices, in the case of the Poincaré group
and other non-compact groups even infinite-dimensional matrices, i.e. operators.

The most important examples of Abelian groups for us are groups of translations. Let
us first consider translations in one dimension, so eq. (11.9’) takes the form ψ(x+ a) =
U(a)ψ(x). We clearly have U(a)U(b) = U(b)U(a) = U(a + b), so this is an Abelian
group. Let us only consider continuous and differentiable representations — this is more
or less required in Quantum Mechanics anyhow. Then f(a, k) = φa(k) is a differentiable
function of a satisfying f(0, k) = 0 and f(a + b, k) = f(a, k) + f(b, k). Differentiating
the last equation, we have for any b:

∂f

∂a
(a, k) + ∂f

∂a
(b, k) = ∂f

∂a
(a, k) = ∂f

∂a
(a+ b, k) = ck

In the first step we have used that f(b, k) does not depend on a, and in the last that
since a + b is arbitrary, neither does ∂f/∂a(a + b, k). Hence f(a, b) = cka. But k
is just a label for the eigenstates of U(a), and we are free to redefine it as long as
different eigenstates get different labels. Thus, we may chose ck = k, so we simply have
φa(k) = f(a, k) = ak. Hence, the irreducible representations of the one-dimensional
translation group are simply:

Uk(a) = eika . (12.9)

The simplest transformation properties have, not unexpectedly, those wavefunctions
which are eigenstates of U(a) itself. Assuming a fixed α, for |ψ 〉 = | k 〉 we have:

ψk(x) = 〈x|k〉 = 〈0|U(x)| k〉 = eikx〈0|k〉 = ψk(0)eikx . (12.10)
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Here ψk(0) is just a normalization constant. The correct transformation properties
follow trivially:

ψk(x+ a) = ψk(0)eik(x+a) = Uk(a)ψk(x) . (12.11)

We see that this state |ψk 〉 transforms according to an irreducible representation of
the translation group. Furthermore, if we calculate the conserved momentum from
Noether’s theorem, for a translation invariant Lagrangian, we indeed find P = k. Thus
we may interpret k as the momentum of the state ψk. It is often taken as a postulate that
the simplest physical systems, like elementary particles, must transform according to
irreducible representations of all their symmetry groups, because otherwise it is always
possible to consider a reducible system to be composed of several simpler ones.

If a system has several commuting abelian symmetries, one can repeat the above con-
struction for each of them. For translations, one arrives at the generalization of (12.9),
with ka interpreted as a scalar product. It is also clear that for translations, the group
transformation law (11.10’) is satisfied for δ = 0, and there are no problems with projec-
tive representations. But for rotations in two dimensions, which we discussed in lecture
note 11, such representations appear. By repeating the construction above, we find the
irreducible representations for any real k:

Uk(φ) = eikφ . (12.12)

But because φ and φ ± 2nπ is the same physical angle for any integer n, and Uk(φ +
2nπ) = ei2nkπU(φ) 6= U(φ) for any irrational k an even most rational values, this is a
projective representation unless k is an integer. This is therefore the only values that
appear in classical theories, but quantum theories are not so restrictive.

We are now turning to non-abelian symmetries. In that case the operators for different
symmetry transformations in general do not commute. This makes it impossible to
represent all transformations as a direct sum of one-dimensional representations. But
a generalization of eq. (12.8) still applies. One can always find bases in H of the direct
product form {|α; k 〉| k;κ 〉}, such that the symmetry operators only transform the
states {k;κ} among themselves. In such a basis U(Si) can be written as:

U(Si) =
∑

k

∑

κ,κ′

| k;κ′ 〉Dk
κ′κ(Si)〈k;κ |Pk . (12.13)

Here Dk
κκ′ is a square matrix. Furthermore, the set of these matrices forms a represen-

tation of the group:
Dk(S2)Dk(S1) = Dk(S2S1) , (12.14)

where matrix multiplication is understood. The index k again labels the representation.
For finite groups, i.e. groups with a finite number of elements, the matrices are always
finite dimensional, and there are always unitary representations of the group.

For our purposes, it is the continuous groups that are of the largest interest. We
shall restrict ourselves to Lie groups, which have group elements that are differentiable
functions of a finite number of parameters. Thus, a rotation in the (proper) rotation
group in 3 dimensions, SO(3), has 3 parameters, which can be taken to be the rotation
angle and the direction of the rotation axis, or alternatively three Euler angles. The
Lorentz group, SO(3,1), is an extension of the rotation groups, with three additional
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parameters, which can be taken to be the component of the boost parameter along three
orthogonal axes. Finally, the Euclidean group in 3 dimensions and the Poincaré group
are extensions of the rotation group and the Lorentz group to include translations in
three or four dimensions, respectively. There is one important difference between the
rotation group and the Lorentz group. The parameter space of the rotation group
is a compact space, because the parameters, which can be chosen as φ = φn, with
0 ≤ φ < 2π and n is a unit vector, so |φ| fits into a sphere in 3-space of radius 2π. For
compact groups like this, there always exists finite-dimensional unitary representations
and it turns out that these are all we need in physics. But the Lorentz, and the
Poincaré groups are not compact, and for them there exist no finite dimensional unitary
representations.

When analyzing Lie groups, it is very useful to introduce generators. We have already
noted that any unitary operator U can be written U = eiH , where H is Hermitean.
It will be convenient to write the parameters of the group as a vector, a. Then, if
U(a) = U(S(a)) represents some element of the group, S(a), we can write U(a) = eiH(a).
Furthermore, it is convenient to parameterize the group so that the unit element is
S0 = S(0), so U(0) = 1. The generators of the group are then Hermitean operators
defined as:

T i = 1
i

(
∂U(a)
∂ai

)

a=0
=
(
∂H

∂ai

)

a=0
= T i

†
. (12.15)

Since T i is a unitary operator, it is a quantum mechanical observable, and its eigenvec-
tors can be used as basis vectors. In the particular case of the translation group, which
is also a Lie group in any number of dimensions, one immediately finds from eq. (12.9)
that T i = ki, the components of the momentum operator.

Generators are convenient, because they can be used to express the structure of a
non-Abelian Lie group in a compact way. One can work out that they satisfy a non-
associative commutator algebra, called a Lie Algebra, which can be written:

[T i, T j ] = icijkT k , (12.16)

where the constants cijk, called the structure constants of the group, can be calculated
from the group composition rule. Of course, the particular form of the generators
depends both on the choice of the parametrization, i.e. on α, and on the particular choice
of U(α). But one can show that different choices just results in linear transformations
among the T i’s. For Abelian groups one of course has cijk = 0, since all the U ’s,
and hence the generators, commute. But for non-Abelian groups this is not the case.
In particular, for the rotation group, with φ as parameters, where one mostly writes
T i = J i, of T i = Si, one finds:

[T i, T j ] = iεijkT k ⇐⇒ J = 1
i J× J , (12.17)

where εijk is the Levi–Civita tensor.
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