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An introduction to partial summation and renormalization

The Feynman diagrams are first and foremost a tool for doing perturbation theory.
But there are many cases that it would be very useful, or even necessary, to be able
to go beyond perturbation theory. In Problem 15 (Schwartz problem 7.4) we saw that
if we add a mass term as a perturbation to the Lagrangian density, we can sum the
perturbation series for the propagator exactly, arriving back at the Schwinger-Dyson
equation. In this case, we can even solve this, and find the massive propagator from the
massless one. This technique of summing the perturbation series, at least partially, has
some very useful generalization.

The starting point for the derivation of the Feynman rules in the Hamiltonian formula-
tion was the Dyson series, i.e. the expansion of the exponential functions in the formula

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
〈0|T{φ0(x1) · · ·φ0(xn)ei

∫
d4xLI [φ0]}| 0〉

〈0|T{ei
∫

d4xLI [φ0]}| 0〉
, S (7.63)

in powers of the coupling constant(s). We further know that we can take care of the
denominator in this expression by simply disregard all disconnected diagrams in the
ensuing series, so we will just drop these in the following. If we use Wick’s theorem and
then Fourier transform the resulting series term by term, we find:

T (p1 . . . pn) =
∑

Connected diagrams
(Feynmandiagrams) . (10.1)

Here p1 . . . pn are the external momenta, and we have dropped the disconnected dia-
grams in accordance with the discussion in Schwartz sec. 7.3.2. In this expansion the
propagators on the external legs are retained, they are removed when using the LSZ
formula.

In a translation-invariant theory, momentum will be conserved in the 2-point function
to all order in perturbation theory according to Noether’s theorem, so we can write

T (p1, p2) = (2π)4
δ4(p1 − p2)DF (p1) , (10.2)

where we call DF (p) the full propagator. To the zeroth order in perturbation theory we
then have:

DF (p) ≈ D0
F (p) =

i
p2 −m2 + iε , (10.3)
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where F 0
F (p) is called the free propagator. Diagrammatically:

=⇒==
p

≈ −→−−

p
.

The arrows on the propagators here are just decorative in the case of neutral fields.
This diagrammatic notation simplifies many manipulation with Feynman series. Let us
redo a slightly generalized version of problem 15 (Schwartz problem 7.4), where we add
a term 1

2δm
2φ2 to LI . This perturbation gives rise to the additional Feynman diagram:

−•−
δm2 .

Note that there are no propagators on the “legs” of such an interaction diagram. It just
contributes a factor δm2 to the adjoining propagators. We then recover the Schwinger-
Dyson equation from the Feynman rules:

=⇒==
p

= −→−−
p

+ −→−−
p

−•−
δm2
−→−−

p

+ −→−−
p

−•−
δm2
−→−−

p

−•−
δm2
−→−−

p

· · ·

= −→−−
[
∑

n

(•−→−−)n
]

= −→−−

1 − −−•−→−−

= 1
(−→−−)−1 −−•−

= i
p2 −m2 − δm2 + iε .

(10.4)

Thus, we see that the mass has been renormalized, m2 → m2 + δm2 by this interaction.
As in problem 15, we could even have avoided summing the geometric series, if we had
noted that from the Feynman rules it follows that except for the free propagator, any
diagram in the perturbation series has a first vertex after the initial propagator. When
exiting that vertex, the remaining possible diagrams are exactly the same as for the full
series. Hence, =⇒== satisfies the Schwinger Dyson equation, which can be immediately
solved.

=⇒== = −→−− + −→−−•=⇒== = −→−− + =⇒==•−→−−

=⇒== = −→−−

1 − −→−−•− = −→−−

1 − −•−→−− .
(10.5)

The last set of equations are derived by starting with the last free propagator, instead
of the first.

The same approach can be used to sum over all tadpole diagrams, i.e. diagrams con-
necting to a propagator at only one point. Typical examples in the φ3 theory are:
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We see that momentum conservation ensures that the line connecting these diagrams
to the propagator carries zero momentum. Hence, if the diagrams are finite, they all
have a constant value of the form:

igD0
F (0)bi =

g

m2 − iεbi , (10.6)

for some constant bi, which depends on the diagram. Thus, for diagram A in the figure,
we have:

bA = ig

∫ d4k

(2π)4
i

k2 −m2 + iε . (10.7)

This integral is actually divergent in all space-time dimensions, not only 4, even if
m2 > 0. This is actually a critical observation, for it seems to make the Feynman
diagram approach doomed to fail. However, we shall disregard this catastrophic failure
for a moment, and assume that all the bi’s to be finite. This can actually happen in
non-relativistic many-particle theories. The contribution from all the tadpole diagrams
inserted at a specific point in a Feynman diagram will then give a total contribution:

B = g

m2 − iε
∑

i

bi . (10.8)

If we make the even stronger assumption than before, that this infinite sum over i also
converges, so B is finite, and calculable, we easily find the contribution from all tadpole
diagrams to the propagator. This sum is precisely the same as the one calculated in
eqs. (10.3) and (10.5), with the trivial substitution δm2 → B. This is because if we
consider any number of tadpoles of any type, they will be connected to the propagator
at the black dots in one of the diagrams in eq. (10.4). This means that the effect of the
tadpole diagrams is simply to renormalize the particle mass, m2 → m2

R = m2 + B. In
many-body theories this renormalization can be finite, showing that a particle passing
through an interacting medium has a different effective mass than it has outside, which
is an experimentally observed effect for electrons in solids.

The case when bi, or more accurately B diverges, is more tricky. To handle this case
we must first introduce a regularization procedure. This is a prescription which modifies
the Feynman integrals in some way by introducing a parameter, such that when the
parameter goes to some limit, the original integral is recovered, while in some other
range of the parameter, the integral is finite. The idea is to carry out the evaluation of
the regularized Feynman diagrams, and then let the parameter go to its limit where the
regularization is removed, hoping that the physical quantities calculated remain finite,
and independent of the renormalization procedure. Many such schemes are or have
been in use, all having advantages and disadvantages. Schwartz prefers dimensional
regularization, where the momentum integrals are continued analytically into a complex
number of space time dimensions, 4→ d (!). This is preferably done after the integration
over k0 is Wick rotated, i.e. rotated in the complex plane to run paarallell to the
imaginary axis (see Schwartz, appendix B.3.

For illustrative purposes we shall just introduce a simple momentum cut-off, a so-called
ultraviolet cut-off, assuming that all momenta and energies are smaller than some max-
imal momentum parameter Λ � m, which ultimately should be taken to infinity. It
is often used for simple qualitative considerations but it has the obvious disadvantage
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that translation-invariance is lost, which makes it unsuitable for general use. In that
case the parameter B = BΛ will depend on Λ, but be finite. The renormalized mass
will then also depend on lambda, m2

R(Λ) = m2 +Bλ. But this will not solve any prob-
lems, because when we let λ → ∞, mR(Λ) will diverge, and nothing is gained. But in
a fundamental theory, the bare mass, m, is not accessible to experiments anyhow, in
contrast to in condensed matter physics or nuclear physics, where our particle can leave
the surrounding medium, and have their masses measured. We may therefore assume
that also the bare mass depends on λ, so m2 → m2

λ, and then take the limit such that:

m2
R = m2

λ +Bλ → m2
R as Λ→∞ .

Thus we assume that the unobservable mλ also diverges as λ→∞. The price we have
paid is that there is no way actually to calculate the value of the mass in the theory.

Based on the above, the presription for handling the tadpole diagrams is then simply to
ignore them, but to insert the renormalized, and hence observed, mass in all propagators.

It turns out that in general, not only the mass, but also at least the coupling constant(s)
and the wavefunction of a relativistic quantum theory needs to be renormalized. How-
ever, it has been rigorously shown that in favorable cases, including QED and the stan-
dard model, only a finite number of parameters need to be renormalized. When this has
been done, all other observable quantities are, in principle, calculable and finite. Theo-
ries with this property are called renormalizable. It turns out that renormalizability is
a very stringent constraint on possible quantum field theories. When it was introduced
in QED around 1950, the renormalization procedure was met with much scepticism, in
spite of the phenomenological success of that theory. However, it has been extremely
successful in selecting theories which agree with experiments. Only General Relativity
of the currently accepted fundamental theories is not renormalizable, needing an infinite
number of renormalization conditions as a quantum field theory.

In addition to ultraviolet divergences, field theories may also have infrared-divergences,
in particular when the momentum goes to zero. This in particular plagues massless
theories, like QED. These divergences are connected to real physics accessible to exper-
iments, and must be circumvented by special methods.
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