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Problem 39:

Exam problem 1i, 2014 spring. See separate solution sheet.

Problem 40:

a) The orbits of a particle of mass m in a potential V = −k/r for a circle and a parabola of fixed angular
momentum ` follows from the general solution of Goldstein sect. 3.6 for eccentricities e = 0 and e = 1
as:

r =
`2

mk

1

1 + e cos θ
=

`2

mk

{
1 circle, e = 0;
1

1+cos θ parabola, e = 1.

Here we have assumed that θ = 0 at the turning point for the parabola. For the latter we have
rt = r0/2, where r0 = l2/mk is the radius of the circular orbit.

b) From the definition of eccentricity, e =
√

1 + 2E`2/mk2, one sees that a parabolic orbit with e = 1
has E = 0. This is also easily seen by evaluating E = mṙ2/2 + `2/2mr2 − k/r at the turning point,
r = rt. Since E is conserved, we have at any point of a parabolic orbit (vp = |ṙ|):

E =
1

2
mvp(r)

2 − k

r
= 0 =⇒ vp(r) =

√
2k

mr
.

For a circular orbit we have r(t) = r0 and ṙ = 0, so:

v2c = r20 θ̇
2 =

l2

m2r20
=

k

mr0
,

with r0 from part a, so we have vp(r0) =
√

2vc. [Since most comets are moving in almost parabolic
orbits, this means that they all have essentially the same speed as they cross the Earth’s orbit, namely
42.1 km/s, since the Earth’s orbit is almost circular, with vc = 29.8 km/s.]

Problem 41:

a) The orbit equation reads in this case:

d2u

dθ2
+ u = −m

`2
d

du
V

(
1

u

)
=
m

`2
d

du

(
ku− 1

2
hu2

)
=
m

`2
(k − hu) ,

or
d2u

dθ2
+ (1 +

mh

`2
)u =

mk

`2
.

This is an inhomogeneous harmonic equation, with homogeneous solution u = A cos(β(θ− θ′)) and a

particular solution u = mk/l2β2. Here β =
√

1 +mh/`2, and A and θ′ are constants of integrations.
Thus we have:

u = A cos(β(θ − θ′)) +
mk

`2β2
=⇒ r =

c

1 + e cos(β(θ − θ′))
,

where c = `2β2/km, while e = A`2β2/km is another unknown constant. We see that r reaches its
minimum value, i.e. the inner turning point, when θ = θ′. Measuring θ from this point, we have
θ′ = 0.

b) We have already found c and β. The discussion of the qualitative nature of the orbits is essentially
identical to that of the Kepler problem, see sect. 3.7 of Goldstein. For e ≥ 1 we have that u = 0
(r =∞) for cos(βθ) = −1/e, and we have unbound motion, with a single turning point. If 0 < e < 1
we have bound orbits with two turning points, and if e = 0 we have a circular orbit of radius c.
However, the orbits for e > 0 are not conical sections, unless β = 1, i.e. h = 0.

c) For an orbit to close, it must be bound, so 0 ≤ e < 1. If e = 0 it is a circle, which is certainly closed.
Otherwise it is closed if r(θ + 2nπ) = r(θ), for some integer n, which means that cos(βθ + 2nβπ) =
cos(βθ), But the cosine function is periodic with period 2π, so this happens if and only if 2nβπ = 2mπ
for some integer m, i.e. if β = m/n, a rational number.
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Problem 42:

a) See the proposed solution for the previous problem with k = 0. We still have β =
√

1 +mh/`2.

b) The angle Ψ between the asymptote of the incoming particle and the turning point, which we have
fixed at θ = 0 in this problem. We thus need to find the value of the angle Ψ > 0, such that
r(Ψ) = ∞ (we also will have r(−Ψ) = ∞, by the symmetry of the orbit about the turning point).
The scattering angle is Θ = π − 2Ψ (see Goldstein sect. 3.10). This means that, since ` = msv0 and

β =
√

1 + h/ms2v20 :

cos(βΨ) = 0 ⇔ Ψ =
π

2β
⇒ Θ(s) = π − 2Ψ = π

(
1− 1

β

)
= π

1− 1√
1 + h/ms2v20

 .

If h = 0, we have β = 1 and therefore Θ = 0, as we should. Furthermore, l = 0 when s = 0, so
β →∞ when s→ 0, and thus Θ→ π when s→ 0, so in this case we find the correct solution also for
l = s = 0.

c) Solving Θ = Θ(s) for s(Θ) we find after some algebra:

s(Θ) =
1

v0

√
h

m

π −Θ√
Θ(2π −Θ)

.

Since Θ(s) is monotonous, dΘ/ds 6= 0 for any finite s, we find the cross section from the definition
(see Goldstein sect. 3.10):

σ(Θ) =
s

sin Θ

∣∣∣ ds

dΘ

∣∣∣ =
h

mv20

1

sin Θ

π2(π −Θ)

Θ2(2π −Θ)
2 .

[We see that σ(Θ) diverges for Θ→ 0, but not quite as strongly as the Rutherford cross section. We
have no divergence (no glory scattering) for θ− > π.]

Problem 43:

a) The orbit equation for u(θ) = 1/r(θ) is unchanged from Problem 42:

d2u

dθ2
+ β2u = 0 ,

with β2 = 1 +mh/l2 = 1− |h|/mv20s2. For β2 > 0 we thus have the same solution:

r =
rt

cos(βθ)
.

The critical value s = sc is given by β = β(sc) = 0, which leads to:

sc =

√
|h|
m

1

v0
.

We see that we can write β2 = 1− (sc/s)
2
.

b) We proceed exactly as in the previous problem to find the angle where r(Ψ) = ∞ for Ψ > 0. As
before Ψ = π/2β, so the scattering angle is:

Θ(s) = π − 2Ψ = π

(
1− 1

β

)
= π

1− 1√
1− |h|/ms2v20

 .
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Now, since β < 1 we have Θ < 0, as expected in an attractive potential. To have orbiting, the
particle must go completely around the center of force at least once, which means that Θ ≤ −2π.

Using β2 = 1− (sc/s)
2

we find that this will happen if:

1− 1/β < −2 ⇐⇒ β <
1

3
⇐⇒ s =

sc√
1− β2

<
3
√

2

4
sc =

3

2v0

√
|h|
2m

.

Thus for impact parameters sc < s ≤ (3
√

2/2) sc ≈ 1.06 sc we have orbiting.

c) If s = sc, we have β = 0, and the solution of the orbit equation is simply:

u = a(θ − θ0) ⇐⇒ r =
c

θ − θ0
,

where c = 1/a and θ0 are constants of integration. We can always choose coordinates such that
θ0 = 0. Then θ = 0 corresponds to r = ∞. We see that r decreases monotonously with increasing
|θ|, and reaches r = 0 when θ = ±∞, i.e. after infinitely many orbits around the center of force.

[It is not difficult to show that if the particle starts with angular momentum l = mv0sc at a finite
distance from the center, it will reach r = 0 in a finite time, although it circles the center of force an
infinite number of times, and so reaches an infinite angular velocity.]

d) In this case we have β2 = −γ2 < 0, and the solution of the orbit equation can be written:

u(θ) =
1

r(θ)
= A exp(γθ) +B exp(−γθ) .

To have a scattering solution, we must allow r → ∞, i.e. u = 0. Choosing coordinates such that
θ → 0 as r →∞ leads to A+B = 0, so we find:

r(θ) =
c

sinh(γθ)
,

where c = 1/2A. This also yields a single-valued θ(r), with orbits generally very similar to those
discussed in the previous part.
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