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PROBLEM 39:

Exam problem 1i, 2014 spring. See separate solution sheet.

PROBLEM 40:

)

The orbits of a particle of mass m in a potential V' = —k/r for a circle and a parabola of fixed angular
momentum ¢ follows from the general solution of Goldstein sect. 3.6 for eccentricities e =0 and e = 1
as:

22 1 2 { 1 circle, e = 0;

T mk 1+ecosf®  mk parabola, e = 1.

Here we have assumed that § = 0 at the turning point for the parabola. For the latter we have
r¢ = 10/2, where rog = [2/mk is the radius of the circular orbit.

From the definition of eccentricity, e = /1 4+ 2E¢2/mk?, one sees that a parabolic orbit with e = 1
has E = 0. This is also easily seen by evaluating E = m7?/2 + (2 /2mr? — k/r at the turning point,
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r =1y Since E is conserved, we have at any point of a parabolic orbit (v, = |£|):
1 2 Kk 2k
E= §mvp(r) - = 0 = vp(r) = el

For a circular orbit we have r(t) = ro and 7 = 0, so:
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with 7 from part a, so we have v,(rg) = \/ivc. [Since most comets are moving in almost parabolic
orbits, this means that they all have essentially the same speed as they cross the Earth’s orbit, namely

42.1km/s, since the Earth’s orbit is almost circular, with v, = 29.8 km/s.]

PROBLEM 41:

a)

The orbit equation reads in this case:
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This is an inhomogeneous harmonic equation, with homogeneous solution u = A cos(3(8 — 6’)) and a

particular solution u = mk/I23%. Here 8 = /1 +mh/f?, and A and @’ are constants of integrations.
Thus we have:
mk c

232 - " 1+ecos(B(0—0))’

where ¢ = (232 /km, while e = A¢?3?/km is another unknown constant. We see that r reaches its
minimum value, i.e. the inner turning point, when # = #’. Measuring 6 from this point, we have
0" =0.

We have already found ¢ and 3. The discussion of the qualitative nature of the orbits is essentially
identical to that of the Kepler problem, see sect. 3.7 of Goldstein. For e > 1 we have that v = 0
(r = 00) for cos(88) = —1/e, and we have unbound motion, with a single turning point. If 0 < e < 1
we have bound orbits with two turning points, and if e = 0 we have a circular orbit of radius c.
However, the orbits for e > 0 are not conical sections, unless 8 =1, i.e. h = 0.

u= Acos(3(0 —0)) +

For an orbit to close, it must be bound, so 0 < e < 1. If e = 0 it is a circle, which is certainly closed.
Otherwise it is closed if (6 + 2n7) = r(0), for some integer n, which means that cos(860 + 2nfn) =
cos(f0), But the cosine function is periodic with period 2, so this happens if and only if 2n8r = 2mmn
for some integer m, i.e. if § = m/n, a rational number.
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PROBLEM 42:

a) See the proposed solution for the previous problem with k = 0. We still have 8 = /1 + mh/(2.

b) The angle ¥ between the asymptote of the incoming particle and the turning point, which we have
fixed at 6 = 0 in this problem. We thus need to find the value of the angle ¥ > 0, such that
r(¥) = oo (we also will have r(—¥) = oo, by the symmetry of the orbit about the turning point).
The scattering angle is © = m — 20 (see Goldstein sect. 3.10). This means that, since £ = msvy and

B=1/1+h/ms?v3:

cos(f¥) =0 < \Il:% = @(S)ZW—2\I/:7T(1—;>:7T 1-

v
\/1+ h/ms?v3

If h =0, we have § = 1 and therefore ® = 0, as we should. Furthermore, [ = 0 when s = 0, so
B — oo when s — 0, and thus ©® — m when s — 0, so in this case we find the correct solution also for
l=s=0.

¢) Solving © = O(s) for s(O) we find after some algebra:
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Since O(s) is monotonous, dO/ds # 0 for any finite s, we find the cross section from the definition
(see Goldstein sect. 3.10):
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[We see that o(0) diverges for © — 0, but not quite as strongly as the Rutherford cross section. We
have no divergence (no glory scattering) for 6— > 7.]

PROBLEM 43:

a) The orbit equation for w(6) = 1/r(#) is unchanged from Problem 42:
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with 82 =1+ mh/l1?> =1 — |h|/mv3s®. For 2 > 0 we thus have the same solution:
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The critical value s = s, is given by 8 = (s.) = 0, which leads to:
[|h] 1
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b) We proceed exactly as in the previous problem to find the angle where r(¥) = oo for ¥ > 0. As
before ¥ = 7/20, so the scattering angle is:

We see that we can write 52 =1 — (s./s)".

@(s)wzww(1;>w 1-



Now, since 8 < 1 we have © < 0, as expected in an attractive potential. To have orbiting, the
particle must go completely around the center of force at least once, which means that © < —2.

Using 82 =1 — (sc/s)2 we find that this will happen if:
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Thus for impact parameters s, < s < (3v/2/2) s, ~ 1.06 s, we have orbiting.
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If s = s., we have 8 = 0, and the solution of the orbit equation is simply:

u=a(f — ) — r=

where ¢ = 1/a and 6, are constants of integration. We can always choose coordinates such that
0o = 0. Then 6 = 0 corresponds to r = co. We see that r decreases monotonously with increasing
|0, and reaches r = 0 when 6 = to0, i.e. after infinitely many orbits around the center of force.

[It is not difficult to show that if the particle starts with angular momentum [ = mugs, at a finite
distance from the center, it will reach » = 0 in a finite time, although it circles the center of force an
infinite number of times, and so reaches an infinite angular velocity.]

In this case we have 32 = —2 < 0, and the solution of the orbit equation can be written:
(0) = L = (v0) (—6)
= = Aex + Bex .
U (0) exp(y exp(—y

To have a scattering solution, we must allow r — oo, i.e. w = 0. Choosing coordinates such that
0 — 0asr— oo leads to A+ B =0, so we find:

&
0) = ——
r(®) sinh(~6) ’
where ¢ = 1/2A. This also yields a single-valued 6(r), with orbits generally very similar to those
discussed in the previous part.



