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Problem 32:

It is assumed that the frictional force on a particle is given by fi = −kiṙi, If we write the total force
Fi = F′i + f ′i , the derivation of eq. (3.24) in Goldstein remains unchanged, and we find:

dG

dt
=

d

dt

∑
i

pi · ri = 2T +
∑
i

Fi · ri = 2T +
∑
i

F′i · r+
∑
i

fi · ri = 2T +
∑
i

F′i · r+
∑
i

kiṙi · ri .

Taking the average of this equation over a time τ , we find:

1

τ

∫ τ

0

dG

dt
dt =

1

τ
[G(τ)−G(0)] = 2T +

∑
i

F′ · ri +
∑
i

kiṙi · ri .

The last average can be evaluated as:∑
i

kiṙi · ri .′ =
1

τ

∑
i

ki

∫ τ

0

ṙi · ri dt =
1

2τ

∑
i

ki

∫ τ

0

dr2i
dt

dt =
1

2τ

∑
i

ki

[
ri(τ)

2 − ri(0)
2
]
,

which approaches zero as τ →∞ if ri(τ) is bounded. Thus the result is proven.

Problem 33:

The turning points are at the perihelion distance, r1 = a(1− e), and the aphelion distance, r2 = a(1 + e),
where a is the semimajor axis. Eliminating a between these two relations we have:

r2 = r1
1 + e

1− e
= 35.2 AU .

The period follows from Kepler’s third law T 2 = 4π2a3/GMd, where a = r1/(1−e), G Newton’s constant
of gravitation and Md the Sun’s mass. Strictly speaking, Md should be replaced by Md +m with m as
the comet mass, but this is a negligible correction. Looking up Md and G we easily calculate T . If we
also neglect the Earth’s mass, we can make an even simpler calculation, since we know the Earth’s period
of revolution, T⊕ = 1 year and semimajor axis, a⊕ = 1 AU. Thus:

T =

(
a

a⊕

)3/2

T⊕ =

(
r1

(1− e) a⊕

)3/2

T⊕ = 76 years .

Problem 34:

In the absence of external forces, the transformed equation for the orbit can be written:

d2u

dθ2
+ u = 0 ,

which is the equation for harmonic motion. The general solution is:

u(θ) = A cos(θ − δ) = B cos θ + C sin θ ,

where A and δ are constants of integration, B = A cos δ and C = B sin δ. Since x = r cos θ, y = r sin θ
and r = 1/u, we find

Bx+ Cy =
B cos θ + C sin θ

B cos θ + C sin θ
= 1 ,

which is the equation for a straight line. The geometric solution is left to the students.
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Problem 35:

Exam problem 1, 2014 fall. See separate solution sheet.

Problem 36:

Exam problem 1, 2014 spring. See separate solution sheet.

Problem 37:

With

x = r cos θ =
(1− e2) cos θ

1 + e cos θ
a , y = r sin θ =

(1− e2) sin θ

(1 + e cos θ)
a

we find

(x+ ea)
2

a2
− 1 =

(
(1− e2) cos θ

1 + e cos θ
+ e

)2

− 1 =

(
(1− e2) cos θ + e+ e2 cos θ

1 + e cos θ

)2

− 1 =

(
e+ cos θ

1 + e cos θ

)2

− 1

=
e2 + 2e cos θ + cos2 θ − 1− 2e cos θ − e2 cos2 θ

(1 + e cos θ)
2 =

(1− e2)(cos2 θ − 1)

(1 + e cos θ)
2

= − (1− e2) sin2 θ

(1 + e cos θ)
2 = −y

2

b2
.

where b =
√

1− e2 a is the semiminor axis of the ellipse.

Problem 38:

We have a circular orbit if the effective potential V ′(r) = −k/r + l2/2µr2 has its minimum, where µ is
the reduced mass of the two particles. This leads to Kepler’s third law which can be solved for the orbital
period as;

τ = 2π

√
µr3

k
.

When the particles are stopped, which we take to be at the time t = 0, they start to fall toward each

other with initial conditions r(0) = r0, ṙ(0) = 0, θ(0) = 0 and θ̇(0) = 0. We thus have the angular

momentum as l = µr20 θ̇(0) = 0 while the energy is E = 1
2µṙ2 − k/r = −k/r0. This yields:

dt

dr
=

1

ṙ
= − 1√

2
µ

(
E + k

r

) = − 1√
2k
µ

(
1
r −

1
r0

) .
Note that we need the negative square root here, because r decreases as t increases, so ṙ < 0. The two
particles hit each other when r = 0, which takes a time:

τ ′ = −
√

µ

2k

∫ 0

r0

dr√(
1
r −

1
r0

) =

√
µr0
2k

∫ r0

0

√
r dr√
r0 − r

If we substitute r = r0 sin2 w we have dr = 2r0 sinw cosw, so

τ ′ =

√
2µr30
k

∫ π/2

0

sin2 w dw =
π

2

√
πµr30
2k

=
τ

4
√

2
.

[If this had been an exam problem, the r-integral would have been given.]
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