PER AMUND AMUNDSEN
DEPARTMENT OF MATHEMATICS AND NATURAL SCIENCE
UNIVERSITY OF STAVANGER

Set 6. Exercises for 29 September 2017

Problem 32: Goldstein, derivation 3.1

Problem 33: Halley's comet follows a very eccentric elliptical orbit with eccentricity e = 0.967. Its perihelion distance is $0.59 \,\text{AU}$ (astronomical unit, $1 \,\text{AU} = 149.6 \cdot 10^6 \,\text{km}$). What is its greatest distance from the Sun (its aphelion distance)? What is the period of the orbit?

Problem 34: Solve the transformed equation of the orbit, Eq. (3.34) in *Goldstein*, for a free particle (V=0). Show that the solution is a straight line, using either a geometrical or an analytical method.

Problem 35: Exam problem 2, 2014 fall.

Problem 36: Exam problem 1, 2014 spring, except part i.

Problem 37: Show that the equation (the symbols are the same as in section 3.7 of *Goldstein*):

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta},\,$$

with $0 \le e < 1$ describes an ellipse which satisfies the equation:

$$\frac{(x+ea)^2}{a^2} + \frac{y^2}{b^2} = 1,$$

and find b. As usual, $x = r \cos \theta$ and $y = r \sin \theta$.

Problem 38: Goldstein, exercise 3.11.