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Problem 27:

A string can only support stretching, i.e. a positive tension, but not a negative one. Thus if we introduce
a Lagrangian multiplier to constrain the length of the string, the corresponding constraining force on the
particle, Qr, must act inward as a centripetal force, so Qr < 0 (a string cannot push the particle). Using
cylindrical coordinates r, θ in the obvious manner, a Lagrangian multiplier λ is introduced to enforce the
constraint r−` = 0. Taking the zero of the potential energy at r = 0, we find the constrained Lagrangian

L̂ as:

L̂ =
1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos θ − λ(r − `)

The variation with respect to r then yields:

−δL̂
δr

= mr̈ −mrθ̇2 −mg cos θ + λ = 0 .

The constraint r = ` implies ṙ = r̈ = 0, so this equation reduces to:

Qr = λ = mg cos θ +m`θ̇2 ,

and the string tension vanishes when Qr = 0. Thus λ is indeed equal to the string tension, derived by
elementary means as the sum of the component of gravity along the string and the centrifugal “force”.

We see that Qr only becomes negative if θ > π/2 for small enough θ̇. As we increase ω = θ̇(0) from zero,
this will happen for a value of ω just large enough for the particle to reach the horizontal position, i.e.

Qr = 0 for θ̇ = 0 at θ = π/2. Since the energy,

E =
1

2
m`2θ̇2 −mg` cos θ ,

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω−
given by:

E =
1

2
m`2ω2

− −mg` = −mg` cos
π

2
= 0 =⇒ ω− =

√
2g

`
.

[Remark: If ω is further increased, the particle gets higher and higher before Qr = 0, until it can

reach the vertical position, θ = π with an angular velocity ωm = θ̇
∣∣
θ=π

such that Qr
∣∣
θ=π

= 0, or

m`ω2
m = −mg cosπ = mg. From energy conservation this happens when ω = ω+, given by:

E =
1

2
m`2ω2

+ −mg` =
1

2
m`2ω2

m −mg` cosπ =
3

2
mg` =⇒ ω+ =

√
5g

`
.

For ω− < ω ≤ ω+ the string will be slack at some point. For ω > ω+ the particle will circulate indefinitely
with a stretched string, in the absence of friction. Note that we do not need to solve for the motion of the
pendulum, which is fortunate, since the exact solution requires some advanced mathematical analysis.]
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Problem 28:

a) The potential energy is the sum of the elastic and the gravitational energy. With the z-axis pointing
upward, we have the total potential and the associated force as:

V (z) =
1

2
k(z − z0)

2
+mgz =⇒ F (z) = −∂V

∂z
= −k(z − z0)−mg .

We have equilibrium at z = ze if the total force vanishes, i.e. if:

0 = F (ze) = −k(ze − z0)−mg =⇒ ze = zo −
mg

k
= z0 −

g

ω2
,

where we have introduced ω =
√
k/m for later use. The Lagrangian is then:

L = T − V =
1

2
mż2 − 1

2
k(z − z0)

2 −mgz .

This gives rise to the equation of motion:

−δL
δz

=
d

dt

∂L

∂ż
− ∂L

∂z
= mz̈ + k(z − z0) +mg = 0 =⇒ z̈ + ω2z = ω2z0 − g = ω2ze .

This, of course, also immediately follows from Newton’s second law. The solution of this inhomo-
geneous linear differential equation is the sum of the well known general solution zg = A cos(ωt) +
B sin(ωt) of the corresponding homogenous harmonic equation, with A and B being integration con-
stants, and any particular solution, zp, of the inhomogeneous equation. Since the inhomogeneous
term is constant, we see by inspection that zp = ze is such a solution. Thus the general solution for
z is:

z(t) = zg + zp = A cos(ωt) +B sin(ωt) + ze ,

This means that the particle oscillates harmonically about ze [with amplitude
√
A2 +B2]. From the

boundary conditions z(0) = 0, ż(0) = 0 one finds:

z(0) = A+ ze = 0 =⇒ A = −ze = −z0 +
g

ω2

ż(0) = [−Aω sin(ωt) +Bω cos(ωt)]t=0 = Bω = 0 =⇒ B = 0 ,

z = ze (1− cos(ωt)) .

b) As seen in the original coordinate system, T is unchanged, while the length of the spring is z − z0 −
1
2at2 = z − z1.

L = T − V =
1

2
mż2 − 1

2
k(z − z1)

2 −mgz

The corresponding Euler–Lagrange equation is also essentially unchanged:

−δL
δz

=
d

dt

∂L

∂ż
− ∂L
∂z

= mz̈+k(z−z1)+mg = 0 =⇒ z̈+ω2z = ω2z1−g = −g+ω2z0+
1

2
aω2t2 .

The only change from the previous part is in the inhomogeneous term. We easily verify that the
solution given in the problem indeed provides a particular solution, provided:

zp(t) = C +Dt2 =⇒ z̈p + ω2zp = 2D + ω2(C +Dt2) = −g + ω2z0 +
1

2
aω2t2

ω2D =
1

2
aω2 =⇒ D =

1

2
a ,

2D + ω2C = −g + ω2ze =⇒ C = z0 −
g + 2D

ω2
= z0 −

g + a

ω2
= z′e.

Thus, we have the general solution:

z(t) = A cos(ωt) +B sin(ωt) + C +Dt2 = A cos(ωt) +B sin(ωt) + z′e +
1

2
at2 .
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This looks like the previoius result, except for the added acceleration term 1
2at2 and that the equi-

librium position ze has been changed to z′e = z0 − (g + a)/ω2, as if the gravitational acceleration has
been changed to g′ = g + a. The boundary conditions can be calculated exactly as before, leading to
A = −z′e, B = 0, so the solution is:

z(t) = z′e (1− cos(ωt)) +
1

2
at2 .

c) Introducing ζ = z − 1
2at2, we have ζ̇ = ż − at. Inserting this in the Lagrangian, we find:

L = T − V =
1

2
m(ζ̇ + at)

2
− 1

2
k(ζ − z0)2 −mg(ζ + 1

2at2) .

The equation of motion for ζ is thus:

d

dt

∂L

∂ζ̇
− ∂L

∂ζ
= m

d

dt
(ζ̇ + at) + k(ζ − z0) +mg = mζ̈ + k(ζ − z0) +mg′ = 0

We see that we have exactly the same equation as in part a above, except that the gravitattional
acceleration has been replaced by g′ = g+a. The new equilibrium position as seen from the rocket, is
found from setting z̈ = 0, and is thus z′e found in the previous part. The solution of the initial value
problem is also the same, with this substitution:

ζ(t) = z′e (1− cos(ωt)) .

Since z = ζ + 1
2at2, this is the same as the solution of the previous problem.

d) The momentum conjugate to ζ is:

pζ =
∂L

∂ζ̇
= m(ζ̇ + at) 6= mζ̇ .

This shows what generally happens when the canonical momentum is calculated in non-inertial coor-
dinate systems. The corresponding Hamiltonian is:

H = ζ̇pζ−L = mζ̇(ζ̇+at)− 1

2
m(ζ̇ + at)

2
+V =

1

2
m(ζ̇ + at)

2
+V −mat(ζ̇+at) = T+V −mat(ζ̇+at) ,

so we do not have H = T + V in this coordinate system. H, like L, has become explicitly time
dependent, and is therefore not conserved.

e) We shall modify L to L′ = L+ dF/dt, with F = F (ζ, t), so that we have:

mζ̇ = p′ζ =
∂L′

∂ζ̇
=
∂L

∂ζ̇
+

∂

∂ζ̇

dF

dt
= m(ζ̇ + at) +

∂

∂ζ̇

dF

dt
.

Hence, the condition mζ̇ = p′ζ leads to, using the chain rule:

∂

∂ζ̇

dF

dt
= −mat =⇒ dF

dt
=
∂F

∂z
ż+

∂F

∂t
= −matζ̇+f(ζ, t) = −matż+ma2t2 +f(z− 1

2at2, t) ,

where f(ζ, t) is an unknown function of ζ and t. Since F does not depend on ζ̇, and hence not on
ż, the coefficients of ż in this equation must agree, so ∂F/∂z = −mat, or F = −matz + g(t) =
−matζ + g(t) − m 1

2a2t3, where g(t) can be chosen freely. By a suitable choice of g(t) we have
F = −matζ, and find:

L′ = L+
dF

dt
= L+

∂F

∂ζ
ζ̇+

∂F

∂t
= L+

1

2
m(ζ̇ + at)

2
−V −matζ̇−maζ =

1

2
mζ̇2− 1

2
k(ζ − z0)

2−m(g+a)ζ ,

which immediately leads to both p′ζ = mζ̇ and the equation of motion in part c.

f) We find the Hamiltonian derived from L′ as:

H ′ =
∂L′

∂ζ̇
ζ̇ − L′ = pζ ζ̇ − L′ = 1

2 ζ̇2 +
1

2
k(ζ − z0)

2
+m(g + a)ζ .

This H ′ is independent of time, and hence conserved. But it is not the total energy of the system of
particle + rocket, since it does not contain the increasing kinetic energy of the accelerating rocket,
which is not conserved, but is provided by the burning of the rocket fuel.
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Problem 29:

a) In standard notation, Z = (m1z1 +m2z2)/(m1 +m2) and z = z2 − z1, we have:

L =
1

2
m1ż

2
1 +

1

2
m2ż

2
2 −

1

2
k(z2 − z1 − l)2 −m1gz1 −m2gz2

=
1

2
(m1 +m2)Ż2 +

1

2

m1m2

m1 +m2
ż2 − (m1 +m2)gZ − 1

2
k(z − l)2 .

b) The equations of motion are found as:

Z : (m1 +m2)Z̈ + (m1 +m2)g = 0 ,

z :
m1m2

m1 +m2
z̈ + k(z − l) = 0 .

We recognize that the problem has been separated into the free fall of the center of mass and harmonic
relative motion. The solutions of these equations are:

Z(t) = −1

2
gt2 +At+B ,

z(t) = l + a sin(ωt) + b cos(ωt) , ω =

√
k(m1 +m2)

m1m2
.

where A,B, a and b are constants of integration. The initial conditions at t = 0 are z1(0) = 0,
z2(0) = l and ż1(0) = 0, ż2(0) = v0. This yields:

B = Z(0) =
m1z1(0) +m2z2(0)

m1 +m2
=

m2

m1 +m2
l .

b = z(0)− l = z2(0)− z1(0)− l = 0 .

A = Ż(0) =
m1ż1(0) +m2ż2(0)

m1 +m2
=

m2

m1 +m2
v0 .

aω = ż(0) = ż2(0)− ż1(0) = v0 =⇒ a =
v0
ω
.

Thus the two particles oscillate harmonically about the freely falling center of mass with a frequency
that does not depend on v0.

Problem 30:

a) From the lectures we have, in standard notation, that the angular momentum l = mr2θ̇ is conserved,

so if r is constant, so is ω = θ̇.

b) The condition for circular motion is that the effective potential, V ′(r) has an extremum. In the
present case we have:

V ′(r) = V (r) +
l2

2mr2
=
−GmM

r
+

l2

2mr2
.

This is the condition for a circular orbit of fixed angular momentum l is:

∂V ′(r)

∂r

∣∣∣∣∣
r=r0

= −f ′(r0) =
GmM

r20
− l2

mr30
= 0 =⇒ l2

mr30
=
GmM

r20
⇐⇒ r0 =

l2

Gm2M
.

If we replace l = mr20ω by the orbital period τ = 2π/ω, we find:

r0 =
(mr20ω)

2

2Gm2M
=
r40ω

2

GM
=

4π2r40
GMτ2

⇐⇒ r30
τ2

=
GM

4π2
.

which is Kepler’s third law (for arbitrary M) in the simplest case of a circular orbit. Note that this
formula does not contain the mass m, or the reduced mass µ in the case of two orbiting objects.
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c) We have:

V ′(r) =
−Km
r2

+
l2

2mr2
∂V ′(r)

∂r

∣∣∣∣∣
r=r0

= −f ′(r0) =
2Km

r30
− l2

mr30
= 0 =⇒

K =
l2

2m2
=

1

2
r40ω

2 =⇒ r0 =
(2K)

1
4

√
ω

⇐⇒ r20
τ

=
1

π

√
K

2
.

The energy follows as:

E = T + V =
1

2
mr20ω

2 − Km

r20
= 0 .

That E ≥ 0 is a strong hint that the motion is unstable.

Problem 31:

a) See Goldstein, fig. 3.11, with µ = m/2, the reduced mass of the two particles.

b) The effective potential (for constant l) is:

V ′(r) =
1

2
kr2 +

l2

2µr2
.

The circular orbit is at the minimum of V ′(r) is given by:

∂V ′

∂r
(r0) = −f ′(r0) = kr0 −

l2

µr30
= 0 =⇒ r0 =

(
l2

µk

)1/4

.

c) We have ∂2V ′/∂r2 = k + 3l2/µr4, so the Taylor series becomes:

V ′(r) = V ′(r0) +
dV ′

dr
(r0) (r − r0) +

1

2

d2V ′

dr2
(r0) (r − r0)

2
+O

(
(r − r0)

3
)

=

√
k

µ
l + 2k(r − r0)

2
+O

(
(r − r0)

3
)
.

Neglecting the higher order terms, and introducing ρ = r−r0 as a new variable, we have the equation
of motion for ρ as:

µρ̈ = −dV ′

dρ
= −4kρ =⇒ ρ̈+

4k

µ
ρ = 0 .

This is the equation for harmonic oscillations with angular frequency ω = 2
√
k/µ. We note that this

is twice the frequency of linear radial oscillations in the same potential.

5


