
UNIVERSITETET I STAVANGER

Institutt for matematikk og naturvitenskap

Suggested solutions, FYS 500 — Classical Mechanics Theory 2017 fall

Set 4 for 15. September 2017

Problem 21:

The modified action integral is:

I ′ =

∫ 2

1

L′(q̇1, . . . , q̇n; q1, . . . , qn; t) d t

=

∫ 2

1

L(q̇1, . . . , q̇n; q1, . . . , qn; t) d t+

∫ 2

1

dF

dt
(q1, . . . , qn; t) d t = I + F

∣∣∣2
1
.

But the coordinates {qi} at the endpoints are fixed, so δF |21 = 0 and therefore:

δI ′ = δI ,

and the Euler–Lagrange equations are unchanged.

Problem 22:

In spherical cylinder coordinates we have r = r[sin θ cosφ, sin θ sinφ, cos θ]. If we change the coordinates
slightly, r changes by (see Problem. 13):

dr =
∂r

∂r
dr +

∂r

∂θ
dθ +

∂r

∂φ
dφ = dr er + rdθ eθ + r sin θ dφ eφ .

For motion on a sphere of radius a, we have the constraint r = a so dr = 0. Thus dr = a(dθ eθ +
r sin θ dφ eφ) with length ds = |dr| given by:

ds2 = dr · dr = a2(dθ2 + sin2 θ dφ2) .

A (smooth) curve on the surface r = a is described by a relation between the angular variables θ and φ,
say θ = θ(φ), or φ = φ(θ). Choosing the latter form turns out to be simpler, because it makes θ a cyclical

variable. We then have dφ = φ′(θ) dθ, where φ′(θ) = dφ/dθ, so ds =
√

1 + sin2 θ φ′2 dθ. The length of
the curve described by the equation θ = θ(φ) between the points with coordinates (θ1, φ1 = φ(θ1)) and
(θ2, φ2 = φ(θ2)) is then:

s =

∫ 2

1

d s = a

∫ θ2

θ1

√
1 + sin2 θ φ′ 2 dθ ≡ a

∫ θ2

θ1

f(φ′, θ) dθ ,

with f(φ′, θ) =
√

1 + sin2 θ φ′ 2. We see that f is indeed independent of θ. To find the shortest, or more
generally a stationary, path connecting the two points is then the variational problem δs = 0, which is
solved by the solutions of the Euler-Lagrange equations:

d

dθ

∂f

∂φ′
− ∂f

∂φ
=

d

dφ

(
sin2 θ φ′√

1 + sin2 θ φ′ 2

)
= 0 .

which immediately yields the first integral:

pφ = ∂f/∂φ′ =
sin2 θ φ′√

1 + sin2 θ φ′ 2
= constant .

Since all points on a sphere are equivalent, we can, without loss of generality, choose our coordinates so
that the starting point is one of the poles, so that sin θ1 = 0. Then we find the constant pφ as:

pφ =
sin2 θ1 φ

′(θ1)√
1 + sin2 θ1 φ′(θ1) 2

= 0 .

This means that φ′ = 0 for all θ, and the solution of the problem is φ(θ) = φ1. This describes arcs of great
circles along the meridians of the sphere. These remain arcs of great circles if we rotate our coordinate
system arbitrarily. [If we instead choose to describe the curve as θ = θ(φ) the solution process is a little
more involved.]
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Problem 23:

A coordinate is cyclic if we can change its value continuously in a time-independent manner, without
changing the Lagrangian. This will certainly be the case a coordinate transformation leaves the mass
distribution unchanged, since then the potential is unchanged, and neither is the kinetic energy affected.
In this problem we must thus find those transformations which leave the mass distribution unchanged.
In the following x, y and z are cartesian coordinates, r, θ and z cylindrical coordinates.

In addition to the total energy, which of course is conserved in all cases, since the Lagrangian is time
independent, we find:

a) The mass distributions is unchanged for translations parallel to the xy-plane, in particular in the x-
and y- directions. Thus x and y are cyclic, and the corresponding conjugate momenta px = mẋ and
py = mẏ are conserved, ṗx = ṗy = 0. The same is, of course, also any linear combination of them.

If we switch to cylindrical coordinates the same argument gives that pr = mṙ and pθ = lz = mr2θ̇
are conserved. However, these conservation laws are not independent of the previous ones. Since
ṙ2 = ẋ2 + ẏ2, we gave p2

r = p2
x + p2

y and for lz we have:

l̇z =
d

dt
(xṗy − yṗz) = ẋpy + xṗy − ẏpx − yṗx =

1

m
(pxpy − pypx) = 0 ,

so lz is also conserved.

b) Invariance: Translation in the x-direction; x is cyclic and px = mẋ is conserved.

c) Invariance: Rotation about the cylinder axis and translations along it; θ and z are cyclical, lz and
pz = mż are conserved.

d) Invariance: Rotation about the cylinder axis; θ is cyclical and lz is conserved.

e) Invariance: Translation along the z axis; z is cyclical and pz is conserved.

f) Invariance: Rotation about the dumbbell axis; θ is cyclical and lz is conserved.

g) The helical thread is invariant under a simultaneous rotation and translation, where dz = ka dθ, where
k is the slope of the helix and a its radius. This means that the generalized coordinate ξ = z − kaθ
is cyclical. Expressing L in terms of r, ξ and z, using θ̇ = (ż − ξ̇)/ka, we find:

L =
m

2

(
ṙ2 +

r2

k2a2
(ξ̇ − ż)

2
+ ż2

)
− V (r, z) .

The conserved generalized momentum is then:

pξ =
∂L

∂ξ̇
=
mr2

k2a2
(ξ̇ − ż) = −mr

2θ̇

ka
= − lz

ka
.

Thus lz is conserved after all (but not mż).

Problem 24:

In polar coordinates ρ, θ in the plane of the rotating hoop the distance of the point mass from the z-axis
is given by the constraint ρ = a sin θ. If we measure θ from the lowest point of the hoop, its height above

this point is z = a(1− cos θ) (= 0 when θ = 0). The velocity along the hoop is vθ = aθ̇. In addition, the
mass rotates with the hoop around the z axis with velocity vh = ρω = ωa sin θ. Since the two velocity
components are perpendicular, the Lagrangian is:

L = T − V =
1

2
m
(
v2
θ + v2

h

)
−mgz =

1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
−mga(1− cos θ) .

There are no cyclical coordinates, but L does not contain the time explicitly, so the energy is a constant
of motion. Since T is quadratic in the velocities, it can be written:

E = T + V =
1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
+mga(1− cos θ) .
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The equation of motion is found as:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ma(aθ̈ − aω2 sin θ cos θ + g sin θ) = 0 .

If the mass remains stationary in equilibrium at some angle θ = θe, one has θ̇
∣∣
θe

= 0 at all times, so

θ̈
∣∣
θe

= 0. At this point the equation of motion reduces to:

sin θe(aω
2 cos θe − g) = 0 .

This equation has two solutions. One is sin θe = 0, which yields the obvious equilibria for θe = 0 and
θe = π, where the mass is at the bottom or the top of the hoop. The last position is easily shown to be
unstable, indeed the energy has a local maximum there. The other equilibrium position is given by:

aω2 cos θe = g =⇒ θe = ± arccos
( g

ω2a

)
.

Because | cos θe| ≤ 1 for any real angle θe, this is only a solution if |g/ω2a| ≤ 1, i.e.:

ω ≥ ω0 =

√
g

a
.

[It is not hard to show that the energy in this state is lower than the one with θe = 0, so this represents
the stable equilibrium for ω > ω0.]

Problem 25:

It is assumed that all (generalized) forces, except the impulsive one, F, can derived from a potential
included in the Lagrangian, L, and are finite. Let Fj(t) be the component of the generalized impulsive
force associated with the generalized momentum qj . This has an impulse:

Sj =

∫
∆t

Fj dt .

All Fk(t) vanish for times outside the short interval ∆t. The Lagrange equations for a system which also
have forces that are not derived from the potential reads (see Goldstein sect. 1.5):

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Fj .

Integrating this result over the short interval t = ti to t = tf = ti + ∆t, where Fj is non-vanishing, we
find: ∫ tf

ti

d

dt

(
∂L

∂q̇j

)
dt−

∫ tf

ti

∂L

∂qj
dt =

∫ tf

ti

Fj dt(
∂L

∂q̇j

)
f

−
(
∂L

∂q̇j

)
i

− ∂L

∂qj
∆t = Sj .

Here ∂L/∂qj is the average of the effective forces derived from L, which is assumed to be small compared
to Fj . It thus will not contribute in the limit ∆t→ 0, and we have:(

∂L

∂q̇j

)
f

−
(
∂L

∂q̇j

)
i

= pj(tf )− pj(ti) = Sj ,

where we have introduced the generalized momenta pj = ∂L/∂q̇j .
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