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Problem 1:

Since vector functions are differentiated component-wise, we find:

v(t) = ṙ(t) =
d

dt
r(t) = [v0x, v0y, v0z + gt] = v0 − gtk ,

a(t) = v̇(t) = −gk .
.

From Newton’s second law it then follows that:

F = ma = −mg k .

Thus the force has magnitude mg and is directed in the negative z-direction.

Problem 2:

We find:
v(t) = ṙ(t) = [−ωR sinωt, ωR cosωt, w] ,

a(t) = v̇(t) = [−ω2R cosωt,−ω2R sinωt, 0] ,

v · a = −ω3R2(sinωt cosωt− cosωt sinωt+ 0) = 0 .

The last line shows that F · v = ma · v = 0, so F ⊥ v.

Problem 3:

This problem can be solved either by brute force or by choosing a smart coordinate system.

I) By brute force, calculating backwards and skipping the ugliest part of the algebra, we find:

r2s2 sin2 θ = r2s2(1− cos2 θ) = r2s2 − (r · s)2 = (r21 + r22 + r23)(s21 + s22 + s23)− (r1s1 + r2s2 + r3s3)
2

= . . . = (r2s3 − r3s2)
2

+ (r3s1 − r1s3)
2

+ (r1s2 − r2s1)
2

= (r× s)
2
.

Taking the (positive) square root of both sides of this equation gives the wanted result.

II) By choosing a smart coordinate system: The formula is trivial if r or s is the null vector, or if the
two vectors are colinear (sin θ = 0). If not, we know from elementary geometry that the two vectors
span a plane. We chose this plane to be the xy-plane, so r3 = s3 = 0. In this plane we can chose the
x-axis to be along r, so r = rr̂ = re1, i.e. r1 = r, r2 = 0. Since then rs cos θ = r1s1 + r2s2 = rs1, we

have s1 = s cos θ, and s2 = ±
√
s2 − s21 = ±s

√
1− cos2 θ = ±s| sin θ|. Thus:

r× s = [r2s3 − r3s2, r3s1 − r1s3, r1s2 − r2s1] = [0, 0, r1s2] = rs[0, 0,±| sin θ|] ,

and the result trivially follows.
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Problem 4:

a) Newton’s 2. law on component form yields:

m[ẍ, ÿ, z̈] = [0, 0,−mg] ⇐⇒ ẍ = 0 , ÿ = 0 , z̈ = −g ,

with immediate solutions, taking the boundary conditions into account:

x = x0 , y = y0 , z = z0 −
1

2
gt2 ,

which is the same as in problem 1 for v0 = 0.

b) Since the basis vectors i, j,k are time independent, we can integrate a vector by integrating it
component-wise and using that if g is constant, so are its components. Since F = mg, we find
(with the initial time t0 = 0):

v(t) = v0 +

∫ t

0

v̇(t) dt = v0 +

∫ t

0

1

m
F(t) dt = v0 +

∫ t

0

g dt = v0 + gt ,

r(t) = r0 +

∫ t

0

v(t) dt = r0 +

∫ t

0

ṙ(t) dt = r0 +

∫ t

0

(v0 + gt) dt = r0 + v0t+
1

2
gt2 .

Problem 5:

a) The trajectory is the one given in problem 4b, with x0 = y0 = z0 = 0 and v0x = v0 cos θ, v0y =

0, v0z = v0 sin θ. Hence x = v0 cos θ t, y = 0 and z = v0 sin θ t − 1
2gt2. To find the equation of the

trajectory, we eliminate the time from these equations by inserting t = x/(v0 cos θ) in the expression
for z:

z = v0 sin θ t− 1

2
gt2 = x tan θ − gx2

2v20 cos2 θ
.

This is the equation for a parabola, with axis parallel to the z-axis.

b) At the maximal height the derivative of z(x) is dz/dx = 0. This maximum, x = xm, is thus found
from:

0 =
dz

dx

∣∣∣
x=xm

= v0 tan θ − gxm
v20 cos2 θ

=⇒ xm =
v20
g

cos θ sin θ =
v20
2g

sin 2θ .

The maximal height is:

zm(θ) = z(xm) =
v20
g

sin2 θ − v20
2g

sin2 θ =
v20
2g

sin2 θ .

c) The projectile is at the ground level if z(x) = 0. This is a quadratic equation, with solutions x = 0,
the starting point, and x = xr, where the range xr is the solution of:

0 = tan θ − gxr
2v20 cos2 θ

=⇒ xr =
2v20
g

cos θ sin θ =
v20
g

sin 2θ = 2xm .

Thus, the angle θ that maximizes the range is the same as the one maximizes sin 2θ, which is for
2θ = π/2, or θ = π/4.
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Problem 6:

a) Without loss of generality, we can take the initial direction of motion in the x-direction. Since the
drag force FS , is always directed along v, it cannot change the direction of motion, so the whole
motion takes place in this direction. The x-component of Newton’s 2. law then yields:

mv̇ = FS = −6πηRv , =⇒ v̇

v
= −6πηR

m
= −1

τ
,

Here we have introduced the time constant, τ , as:

τ =
m

6πηR
=

(4π/3)ρR3

6πηR
=

2ρR2

9η
.

where ρ = 1 000 kg/m3 is the density of the water in the drop. The differential equation for v(t) is
standard, and we find, if v(0) = v0:∫ v

v0

dv

v
= −

∫ t

0

dr

τ
=⇒ ln

(
v

v0

)
= − t

τ
=⇒ v = v0e

−t/τ .

The numerical value of τ is

τ =
2πρR2

9η
=
{

0.15 ms R = 1µm,
150 s R = 1 mm.

b) Since there is no initial velocity, all forces will act in the z-direction, and we may choose a coordinate
system with the z-axis positive downward. In this system the z-component of Newton’s 2. law reads,
with v = ż and τ defined as above and the boundary condition v(0) = 0:

mv̇ = mg − 6πηRv , =⇒ v̇ = g − v/τ ,∫ v

0

dv

gτ − v
=

1

τ

∫ t

0

dt , =⇒ ln(gτ − v)
∣∣∣v
0

= − t
τ

=⇒ v = gτ
(

1− e−t/τ
)
.

We see that
v(t) −→ gτ = vτ as t −→∞ ,

where vτ is the terminal velocity.

Problem 7:

The arguments for this problem follow those of problem 5 closely, so we only the main points are presented.

a) Introducing a constant K = 1
2CρA/m, the equation of motion yields:

mv̇ = FR = −mKv2 =⇒
∫ v

v0

dv

v2
= −Kt ,

1

v

∣∣∣v
v0

= Kt =⇒ v =
v0

1 +Ktv0

[We see that v → 0 as t→∞ also in this case, but much more slowly].

b) The terminal velocity, vt, is reached when the gravitational force and the air resistance are oppositely
equal, i.e. when

mg = 1
2CρAv2t =⇒ vt =

√
CρAg

2m
=

√
g

K
.

c) As in problem 5, we assume for simplicity v0 = 0:

mv̇ = mg −mKv2 = mK
(
v2t − v2

)
,∫ v

0

dv

v2t − v2
=

1

vt

∫ v

0

(
1

vt − v
+

1

vt + v

)
d v = Kt ,

ln

(
vt + v

vt − v

)
= vtKt =

√
Kgt =⇒ vt + v

vt − v
= e
√
Kgt ,

v(t) = vt

(
evtKt − 1

evtKt + 1

)
= vt

(
1− e−vtKt

1 + e−vtKt

)[
= vt tanh

(
vtKT

2

)]
−→ vt as t→∞ .
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