UNIVERSITETET I STAVANGER

INSTITUTT FOR MATEMATIKK OG NATURVITENSKAP

Suggested solutions, FYS 500 — Classical Mechanics Theory 2017 fall

Set 1 for 25. August 2017

PROBLEM 1:

Since vector functions are differentiated component-wise, we find:

$$\mathbf{v}(t) = \dot{\mathbf{r}}(t) = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}(t) = [v_{0x}, v_{0y}, v_{0z} + gt] = \mathbf{v}_0 - gt\,\mathbf{k}\,,$$

$$\mathbf{a}(t) = \dot{\mathbf{v}}(t) = -g\mathbf{k}\,.$$

From Newton's second law it then follows that:

$$\mathbf{F} = m\mathbf{a} = -mq\mathbf{k}$$
.

Thus the force has magnitude mq and is directed in the negative z-direction.

PROBLEM 2:

We find:

$$\mathbf{v}(t) = \dot{\mathbf{r}}(t) = [-\omega R \sin \omega t, \omega R \cos \omega t, w],$$

$$\mathbf{a}(t) = \dot{\mathbf{v}}(t) = [-\omega^2 R \cos \omega t, -\omega^2 R \sin \omega t, 0],$$

$$\mathbf{v} \cdot \mathbf{a} = -\omega^3 R^2 (\sin \omega t \cos \omega t - \cos \omega t \sin \omega t + 0) = 0.$$

The last line shows that $\mathbf{F} \cdot \mathbf{v} = m\mathbf{a} \cdot \mathbf{v} = 0$, so $\mathbf{F} \perp \mathbf{v}$.

PROBLEM 3:

This problem can be solved either by brute force or by choosing a smart coordinate system.

I) By brute force, calculating backwards and skipping the ugliest part of the algebra, we find:

$$r^{2}s^{2}\sin^{2}\theta = r^{2}s^{2}(1 - \cos^{2}\theta) = r^{2}s^{2} - (\mathbf{r} \cdot \mathbf{s})^{2} = (r_{1}^{2} + r_{2}^{2} + r_{3}^{2})(s_{1}^{2} + s_{2}^{2} + s_{3}^{2}) - (r_{1}s_{1} + r_{2}s_{2} + r_{3}s_{3})^{2}$$
$$= \dots = (r_{2}s_{3} - r_{3}s_{2})^{2} + (r_{3}s_{1} - r_{1}s_{3})^{2} + (r_{1}s_{2} - r_{2}s_{1})^{2} = (\mathbf{r} \times \mathbf{s})^{2}.$$

Taking the (positive) square root of both sides of this equation gives the wanted result.

II) By choosing a smart coordinate system: The formula is trivial if \mathbf{r} or \mathbf{s} is the null vector, or if the two vectors are colinear ($\sin \theta = 0$). If not, we know from elementary geometry that the two vectors span a plane. We chose this plane to be the xy-plane, so $r_3 = s_3 = 0$. In this plane we can chose the x-axis to be along \mathbf{r} , so $\mathbf{r} = r\hat{\mathbf{r}} = r\mathbf{e}_1$, i.e. $r_1 = r$, $r_2 = 0$. Since then $rs\cos\theta = r_1s_1 + r_2s_2 = rs_1$, we have $s_1 = s\cos\theta$, and $s_2 = \pm\sqrt{s^2 - s_1^2} = \pm s\sqrt{1 - \cos^2\theta} = \pm s|\sin\theta|$. Thus:

$$\mathbf{r} \times \mathbf{s} = [r_2s_3 - r_3s_2, r_3s_1 - r_1s_3, r_1s_2 - r_2s_1] = [0, 0, r_1s_2] = rs[0, 0, \pm |\sin \theta|],$$

and the result trivially follows.

Problem 4:

a) Newton's 2. law on component form yields:

$$m[\ddot{x},\ddot{y},\ddot{z}] = [0,0,-mg] \qquad \Longleftrightarrow \qquad \ddot{x} = 0, \qquad \ddot{y} = 0, \qquad \ddot{z} = -g,$$

with immediate solutions, taking the boundary conditions into account:

$$x = x_0,$$
 $y = y_0,$ $z = z_0 - \frac{1}{2}gt^2,$

which is the same as in problem 1 for $\mathbf{v}_0 = 0$.

b) Since the basis vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are time independent, we can integrate a vector by integrating it component-wise and using that if \mathbf{g} is constant, so are its components. Since $\mathbf{F} = m\mathbf{g}$, we find (with the initial time $t_0 = 0$):

$$\mathbf{v}(\mathbf{t}) = \mathbf{v}_0 + \int_0^t \dot{\mathbf{v}}(t) \, \mathrm{d}t = \mathbf{v}_0 + \int_0^t \frac{1}{m} \mathbf{F}(t) \, \mathrm{d}t = \mathbf{v}_0 + \int_0^t \mathbf{g} \, \mathrm{d}t = \mathbf{v}_0 + \mathbf{g}t \,,$$

$$\mathbf{r}(\mathbf{t}) = \mathbf{r}_0 + \int_0^t \mathbf{v}(t) \, \mathrm{d}t = \mathbf{r}_0 + \int_0^t \dot{\mathbf{r}}(t) \, \mathrm{d}t = \mathbf{r}_0 + \int_0^t (\mathbf{v}_0 + \mathbf{g}t) \, \mathrm{d}t = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{g}t^2 \,.$$

PROBLEM 5:

a) The trajectory is the one given in problem 4b, with $x_0 = y_0 = z_0 = 0$ and $v_{0x} = v_0 \cos \theta$, $v_{0y} = 0$, $v_{0z} = v_0 \sin \theta$. Hence $x = v_0 \cos \theta$ t, y = 0 and $z = v_0 \sin \theta$ t $-\frac{1}{2}gt^2$. To find the equation of the trajectory, we eliminate the time from these equations by inserting $t = x/(v_0 \cos \theta)$ in the expression for z:

$$z = v_0 \sin \theta \ t - \frac{1}{2}gt^2 = x \tan \theta - \frac{gx^2}{2v_0^2 \cos^2 \theta}$$
.

This is the equation for a parabola, with axis parallel to the z-axis.

b) At the maximal height the derivative of z(x) is $\mathrm{d}z/\mathrm{d}x=0$. This maximum, $x=x_m$, is thus found from:

$$0 = \frac{\mathrm{d}z}{\mathrm{d}x}\Big|_{x=x_m} = v_0 \tan \theta - \frac{gx_m}{v_0^2 \cos^2 \theta} \qquad \Longrightarrow \qquad x_m = \frac{v_0^2}{g} \cos \theta \sin \theta = \frac{v_0^2}{2g} \sin 2\theta.$$

The maximal height is:

$$z_m(\theta) = z(x_m) = \frac{v_0^2}{g} \sin^2 \theta - \frac{v_0^2}{2g} \sin^2 \theta = \frac{v_0^2}{2g} \sin^2 \theta.$$

c) The projectile is at the ground level if z(x) = 0. This is a quadratic equation, with solutions x = 0, the starting point, and $x = x_r$, where the range x_r is the solution of:

$$0 = \tan \theta - \frac{gx_r}{2v_0^2 \cos^2 \theta} \qquad \Longrightarrow \qquad x_r = \frac{2v_0^2}{g} \cos \theta \sin \theta = \frac{v_0^2}{g} \sin 2\theta = 2x_m.$$

Thus, the angle θ that maximizes the range is the same as the one maximizes $\sin 2\theta$, which is for $2\theta = \pi/2$, or $\theta = \pi/4$.

2

PROBLEM 6:

a) Without loss of generality, we can take the initial direction of motion in the x-direction. Since the drag force \mathbf{F}_S , is always directed along \mathbf{v} , it cannot change the direction of motion, so the whole motion takes place in this direction. The x-component of Newton's 2. law then yields:

$$m\dot{v} = F_S = -6\pi\eta Rv$$
, \Longrightarrow $\frac{\dot{v}}{v} = -\frac{6\pi\eta R}{m} = -\frac{1}{\tau}$,

Here we have introduced the time constant, τ , as:

$$\tau = \frac{m}{6\pi\eta R} = \frac{(4\pi/3)\rho R^3}{6\pi\eta R} = \frac{2\rho R^2}{9\eta} \,.$$

where $\rho = 1000 \,\mathrm{kg/m^3}$ is the density of the water in the drop. The differential equation for v(t) is standard, and we find, if $v(0) = v_0$:

$$\int_{v_0}^{v} \frac{\mathrm{d}v}{v} = -\int_0^t \frac{\mathrm{d}r}{\tau} \qquad \Longrightarrow \qquad \ln\left(\frac{v}{v_0}\right) = -\frac{t}{\tau} \qquad \Longrightarrow \qquad v = v_0 e^{-t/\tau} \,.$$

The numerical value of τ is

$$\tau = \frac{2\pi\rho R^2}{9\eta} = \begin{cases} 0.15 \,\text{ms} & R = 1 \,\mu\text{m}, \\ 150 \,\text{s} & R = 1 \,\text{mm}. \end{cases}$$

b) Since there is no initial velocity, all forces will act in the z-direction, and we may choose a coordinate system with the z-axis positive downward. In this system the z-component of Newton's 2. law reads, with $v = \dot{z}$ and τ defined as above and the boundary condition v(0) = 0:

$$m\dot{v} = mg - 6\pi\eta Rv \,, \qquad \Longrightarrow \qquad \dot{v} = g - v/\tau \,,$$

$$\int_0^v \frac{\mathrm{d}v}{g\tau - v} = \frac{1}{\tau} \int_0^t \mathrm{d}t \,, \qquad \Longrightarrow \qquad \ln(g\tau - v)\Big|_0^v = -\frac{t}{\tau} \qquad \Longrightarrow \qquad v = g\tau \left(1 - e^{-t/\tau}\right) \,.$$

We see that

$$v(t) \longrightarrow g\tau = v_{\tau}$$
 as $t \longrightarrow \infty$,

where v_{τ} is the terminal velocity.

PROBLEM 7:

The arguments for this problem follow those of problem 5 closely, so we only the main points are presented.

a) Introducing a constant $K = \frac{1}{2}C\rho A/m$, the equation of motion yields:

$$m\dot{v} = F_R = -mKv^2 \implies \int_{v_0}^v \frac{\mathrm{d}v}{v^2} = -Kt,$$

$$\frac{1}{v}\Big|_{v_0}^v = Kt \implies v = \frac{v_0}{1 + Ktv_0}$$

[We see that $v \to 0$ as $t \to \infty$ also in this case, but much more slowly].

b) The terminal velocity, v_t , is reached when the gravitational force and the air resistance are oppositely equal, *i.e.* when

$$mg = \frac{1}{2}C\rho Av_t^2 \implies v_t = \sqrt{\frac{C\rho Ag}{2m}} = \sqrt{\frac{g}{K}}.$$

c) As in problem 5, we assume for simplicity $v_0 = 0$:

$$\begin{split} m\dot{v} &= mg - mKv^2 = mK\left(v_t^2 - v^2\right)\,,\\ \int_0^v \frac{\mathrm{d}v}{v_t^2 - v^2} &= \frac{1}{v_t} \int_0^v \left(\frac{1}{v_t - v} + \frac{1}{v_t + v}\right) \,\mathrm{d}\,v = Kt\,,\\ \ln\left(\frac{v_t + v}{v_t - v}\right) &= v_t Kt = \sqrt{Kg}t \quad \Longrightarrow \quad \frac{v_t + v}{v_t - v} = e^{\sqrt{Kg}t}\,,\\ v(t) &= v_t \left(\frac{e^{v_t Kt} - 1}{e^{v_t Kt} + 1}\right) = v_t \left(\frac{1 - e^{-v_t Kt}}{1 + e^{-v_t Kt}}\right) \left[= v_t \tanh\left(\frac{v_t KT}{2}\right)\right] \longrightarrow v_t \text{ as } t \to \infty\,. \end{split}$$