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Problem 70:

In standard notation, with β = ẋ/c and γ = 1/
√

1− β2, we have the Lagrangian as:

L = mc2 + T − V = −
√

1− β2mc2 − 1

2
kx2 ,

from which the energy follows from the standard Hamiltonian construction:

E = h = pẋ− L = γmc2 + V (x) = γmc2 +
1

2
kx2 ,

where the canonical momentum is:

p =
∂L

∂ẋ
= −mc2 dγ

dẋ
= γmcβ .

(see Goldstein, eqs. 6.137 and 6.140). Since L (and therefore h) is independent of t, E is conserved. As
usual in one-dimensional problems, x(t) is most easily obtained from the expression for the energy. We
can rewrite this as:

1

γ
=

√
1−

(
ẋ

c

)2

=
mc2

E − V (x)
⇐⇒ ẋ =

dx

dt
= c

√√√√[1−
(

mc2

E − V (x)

)2
]
.

This is the equation of motion, which can be solved by a direct integration, but the answer can only be
obtained in terms of elliptic integrals. [For results valid in the limit of small oscillations, se Goldstein, p.
316-7.]

Problem 71:

The Lagrangian for a particle in an electromagnetic field is given by Goldstein eq. (1.63) as:

L =
1

2
mv2 − qφ+ qA · v ,

where φ is the electric scalar potential (qφ is the potential energy), and A the magnetic vector potential.
With a gauge transformation, A→ A′ = A + ∇ψ, φ→ φ′ = φ− ∂ψ/∂t, the transformed Lagrangian is:

L′ =
1

2
mv2 − qφ′ + qA′ · v =

1

2
mv2 − qφ+ qA · v + q

(
∂ψ

∂t
+ ∇ψ · v

)
= L+

dψ

dt
,

where we have used that v = ṙ. But we learned in problem 21 (cf. Goldstein derivation 1.8) that adding
a total derivative to the Lagrangian does not change the equations of motion, and hence the motion of
the particle.

Problem 72:

Exam problem 2, 2013 fall. See separate solution sheet.

Problem 73:

Exam problem 1, 2015 spring. See separate solution sheet.
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Problem 74:

a) We must have:
a
′ = C

′
b
′ = La = LCb = LCL

−1
b
′ ⇐⇒ C

′ = LCL
−1 .

b) Since TrAB = TrBA, we have:

C ′
µ
µ = TrLCL−1 = TrL−1LC = TrC = Cµµ .

c) With the matrix notation F = (Fαβ) we have from the explicit representation of F (see Goldstein

7.71):

F =
1

c


0 Ex Ey Ez
Ex 0 cBz −cBy
Ey −cBz 0 cBx
Ez cBy −cBx 0

 ⇒

F
2 =

1

c2


E2 −c(E×B)x −c(E×B)y −c(E×B)z

−c(E×B)x E2
x − c2(B2

y +B2
z ) ExEy + c2BxBy ExEz + c2BxBz

−c(E×B)y ExEy + c2BxBy E2
y − c2(B2

x +B2
z ) EyEz + c2ByBz

−c(E×B)z ExEz + c2BxBz EyEz + c2ByBz E2
z − c2(B2

x +B2
y)

 .

According to the previous part, the trace of c2F2 is invariant (a scalar):

1

2
c2TrF2 =

1

2
c2FαβF

β
α = E2 − c2B2 .

d) If |E| > c |B| in some coordinate system, then from the previous part E2− c2B2 > 0 in any frame, so
|E| − c |B| > 0 in all coordinate systems.

Problem 75:

The first identity follows from the vector triple product property a · b × e = a × b · e with e = c × d.
The last identity then follows from the formula given.

Problem 76:

a) Since E and B are vectors, the spatial scalar product E ·B is rotation invariant. It therefore suffices to
prove that it is also invariant under a boost. This we can take to be the x-direction, Lx(β), as the result
for an arbitrary direction can then be obtained by an additional rotation. Since L−1(β) = L(−β), we
have from Goldstein eq. (7.11) and the fact that F must transform as C in problem 73 above (v = cβ):

F
′ =

1

c


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




0 Ex Ey Ez
Ex 0 cBz −cBy
Ey −cBz 0 cBx
Ez cBy −cBx 0




γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



=
1

c


0 γ2(1− β2)Ex γ(Ey − cβBz) γ(Ez + cβBy)

γ2(1− β2)Ex 0 γ(−βEy + cBz) γ(−βEz − cBy)
γ(Ey − cβBz) γ(βEy − cBz) 0 cBx
γ(Ez + cβBy) γ(βEz + cBy) −cBx 0

 .

We can then read off the transformed fields as:

E′x = γ2(1− β2)Ex = Ex , E′y = γ(Ey − vBz) , E′z = γ(Ez + vBy) ,

B′x = Bx , B′y = γ
(
By +

v

c2
Ez

)
, B′z = γ

(
Bz −

v

c2
Ey

)
.

By taking the parallel and perpendicular components of the results given on the problem sheet, on
finds identical results. The identity γ2β2 = γ2 − 1 may be useful in proving this.

b) Using the identity proven in problem 74b, one finds:

E′ ·B′ = γ2

[
E ·B−

(
2γ

γ + 1
− γ2β2

(γ + 1)
2

)
(β ·E)(β ·B)− 1

c2
v ×E · v ×B

]

= γ2

[
E ·B−

(
2γ

γ + 1
− γ2 − 1

(γ + 1)
2

)
(β ·E)(β ·B)− β2E ·B + (β ·E)(β ·B)

]
= E ·B .

It would have sufficed to prove this for a boost in a specific direction, as the result is obviously rotation
invariant. Note that this result means that if E and B are perpendicular in some inertial coordinate
system, as they are for electromagnetic radiation, they are perpendicular in any frame.

2


