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Relativistic tensors

In the lecture notes for 23.10 we summarized some of the basic properties for tensors in Euclidean spaces.
Here we generalize these result to more general vector spaces, like the Minkowski space-time of special
relativity (see also Goldstein sect. (7.5)). We have introduced 4-vectors xµ = [c0 = ct, x1, x2, x3] = [x0,x],
which transforms with Lorentz-transformations (including rotations), as discussed in Goldstein sect. (7.2-
3). Any set of 4 quantities uµ transforming under coordinate transformations like xµ will be called a
contravariant 4-vector. These will always be written with an upper index, also called a contravariant
index. This includes the 4-velocity, vµ = dxµ/dτ and the 4-momentum pµ = mvµ. These vectors satisfy
the usual algebraic rules of a vector space, i.e. they can be added and multiplied by scalars to form new
vectors of the same kind.

In the following we shall consider a more general vector space with contravariant vectors that transforms
with some group of linear transformations that leave some interesting quantities, the scalars, invariant.
A scalar f and a contravariant vector, vµ, transforms as:

f ′ = f , v′µ = Aµν v
ν , (0.56)

respectively, under a coordinate transformation A = (Aµν). Here we have introduced a modified version
of the Einstein summation convention: We sum over a pair of repeated indices if and only if one is upper
and one is lower. Thus, A is written with one upper and one lower index. Lower indices are also called
covariant indices. Note in particular the unit matrix: 1µν = δµν (= δµν). When transposing a matrix
using this convention, upper indices remain upper and lower remain lower:

Ã =
(
Ãµν

)
= (A µ

ν ) . (0.57)

An equation, or other relation, that retains its form under a coordinate transformation, is called covariant.
A covariant homogenous linear relation between two vectors can be written as w = Mv in matrix form
or wµ = Mµ

νv
ν in component form. Under a coordinate change, vµ → v′µ = Aννv

ν , and similar for
w → w′, the relation is transformed into v′µ = M ′µνw

′ν . Here M ′ is given by a similarity transformation,
which in our new notation can be written:

M ′ = AMA−1 ⇐⇒ M ′µν = AµρM
ρ
σ A
−1σ

ν = AµρÃ−1
σ

ν M
ρ
σ . (4.41a)

We say that M transforms as a mixed tensor of rank 2, with one upper and one lower index. Similar to
the Euclidean case, this transformation law can be generalized to a tensor of rank M +N or M,N ; with
M upper (contravariant) indices and N lower (covariant) indices:

T ′
µ1...µM

ν1...νN = Aµ1
σ1 · · ·AµM

σM
Ã−1

ρ1

ν1 · · · Ã−1
ρN

νN Tσ1...σM

ρ1...ρN (5.10b)

Note that upper and lower indices can occur in any order, and the order is important, so e.g. Tµνλ 6= Tµλ
ν .

Products of matrices satisfy ÃB = B̃Ã and (AB)
−1

= B−1A−1, and, as one easily checks, Ã−1 = Ã−1,

which means that
˜

(AB)
−1

= Ã−1B̃−1. Thus Ã−1, and A satisfy the same group multiplication rules, but
they are only identical for orthogonal transformations. For other groups of transformations, we have to
distinguish carefully between upper and lower indices.

The transformation matrices satisfy:

AλµÃ−1
ν

λ = A−1
ν
λA

λ
µ = 1νµ = δνµ = AµλÃ−1

λ

ν , (0.58)
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where the last identity follows by transposition. Using this it is easily shown that a contraction of an
upper and a lower index of a tensor of rank M in the contravariant indices and rank N in the covariant
ones yields a tensor of rank M − 1, N − 1. One can contract any upper index with any lower. We show
this for a contraction of the last index pair, the proof for any other pair is the same:

T ′
µ1...µM−1λ

ν1...νN−1λ = Aµ1
σ1
· · ·AµM−1

σM−1
AλσM

Ã−1
ρ1

ν1 · · · Ã−1
ρN−1

νN−1
Ã−1

ρN

λ Tσ1...σM

ρ1...ρN

= δρM σM
Aµ1

σ1
· · ·AµM−1

σM−1
Ã−1

ρ1

ν1 · · · Ã−1
ρN−1

νN−1
Tσ1...σM−1σM

ρ1...ρN−1ρN ,

= Aµ1
σ1 · · ·AµM−1

σM−1
Ã−1

ρ1

ν1 · · · Ã−1
ρN−1

νN−1
Tσ1...σM−1λ

ρ1...ρN−1λ , (0.51a)

which is the correct transformation law. In a similar manner we can also generalize the result of eq.
(0.52) from the lectures of 23.10 to mixed tensors. A particularly useful contraction is the trace of a
mixed tensor of rank 1,1, which is just the trace of the corresponding matrix: Tr (Mµ

ν) = Mµ
µ, which

is a scalar.

A tensor of rank 1 with only a lower index is called a covariant vector. These form a vector space of
their own, which is isomorphous to the space spanned by the set of contravariant vectors, since they have
the same number of component, say D, and all real vector spaces of dimension D are isomorphous. But
we cannot identify the two types of vectors in the general case, because they transform differently under
coordinate transformations. But if we restrict ourself to orthogonal transformations, i.e. rotations and

mirrorings, then A−1 = Ã, and there is no difference between the transformation properties of co- and
contravariant vectors, and we may identify the two. More generally, we can identify co- and contravariant
tensor components in this case. This leads to the formalism for Euclidean tensors discussed in the notes
for 23.10.

As in the case of Euclidean tensors, we can construct tensors of arbitrary rank by taking direct products
of vectors. Thus if v1 . . . vM are M contravariant vectors and w1 . . . wN are N covariant ones, we have:

Tµ1...µN
ν1...νN = vµ1

1 · · · v
µN

M w1ν1 · · ·wNνN , (0.47a)

which is seen to transform correctly. In the same manner we can define the direct product of tensors,
producing new tensors. We can, of course, form contractions of such direct products. Particularly
important is the contraction of a covariant and a contravariant vector, vµ and wµ, which yields the scalar
vµwµ. This we can call a scalar product, but note that we so far have no prescription for forming a scalar
product of two contravariant, or two covariant, vectors.

An important class of covariant vectors is formed from scalar fields, i.e. scalars which take different values
at different points, so they depend on the coordinates xµ. If f(x) is such a scalar field, we can always
calculate the gradient of f , with components written ∂µf = f,µ, like in Euclidean space:

∂µf =
∂f

∂xµ
. (0.59)

It is easy to check that ∂µf really transforms as a covariant vector, i.e. with a lower index, because from
the transformation law for x we have:

xµ = A−1
ν
ν x
′ν ⇐⇒ ∂xµ

∂x′ν
= A−1

µ
ν . (0.60)

so from eq. (0.58) and the chain rule:

∂′µf =
∂f

∂x′µ
=

∂xν

∂x′µ
∂f

∂xν
= A−1

ν
µ ∂νf = Ã−1

ν

µ ∂νf , (0.61)

which is the correct transformation law for a tensor with one lower index, i.e. a covariant vector. With
this notation, we can write the differential of f simply as:

df =
∂f

∂x′µ
dxµ = ∂µf dxµ (0.62)

2



This we can read as the contraction of the contravariant vector dxµ, which transforms like xµ, and
∂µf , which produces a scalar. Note that there is no minus sign in this formula, even if A is a Lorentz
transformation, in which case we have:

df =
∂f

∂x′µ
dxµ = ∂µf dxµ = ∂0f dx0 + ∇f · dx = ∂tf dt+ ∇f · dx . (0.62a)

Eq. (0.62) can be interpreted as an expansion of the differential form df in terms of the basic forms
{dxµ}, with ∂µf as the components of df in this basis. Because of this interpretation, covariant vectors
are also called differential forms, and df is interpreted as the coordinate-free way of writing this vector,
just as we may write x = xµ eµ for “normal” contravariant vectors. Note that, since we have so far
introduced no concept of a length of a vector, there is no assumption that df or dxµ are “small” involved
in this notation. But we can of course still use eq. (0.62) to calculate the rate of change of f along some
parameterized path xµ(λ) in our vector space from the chain rule:

df

dλ
= ∂µf

∂xµ

∂λ
. (0.62b)

In particular, for a time-like trajectory in Minkowski space we can use the proper time, τ , as parameter,
so we have the rate of variation of f along the trajectory xµ(τ) as:

df

dτ
=

∂f

∂xµ
∂xµ

∂τ
= ∂µf u

µ = ∂0f u
0 + ∇f · u = γ[∂tf + ∇f · v] , (0.62c)

where uµ = dxµ/dτ = γ[c,v] is the 4-velocity. Note that there is no minus sign in this formula either,
and that it can be interpreted as the usual substantial derivative multiplied by the time dilatation factor
γ. As in the Euclidean case, we can generalize eq. (0.62a) to define the directional derivative of f along
an arbitrary vector v = [vµ]:

∂vf = ∂µf v
µ . (7.41)

One can, of course, also take partial derivatives of tensor fields, i.e. tensors that depend on the coordinates
xµ. This operation increases the covariant rank of a tensor by one, as is easily verified. In particular, if
wµ(x) is a (contravariant) vector field, ∂µw

ν is a mixed tensor of rank 2. If we contract the indices of
this, we obtain the divergence of w as the scalar:

Div w = ∂µw
µ . (0.63)

In Minkowski space this leads to: Div w = ∂0 w
0 + ∇ · w, again without a minus sign. In particular,

Div x = ∂µx
µ = 4.

So far, we have worked without introducing the length of a vector. Thus the formulation works for
arbitrary linear coordinate transformations, including those that change the length of a vector, like
scale transformations. But just like Euclidean space, Minkowski space is endowed with an additional
structure, namely a scalar product for contravariant vectors. It is then useful to restrict the definition
of tensors to transformations that leave the scalar product invariant. In Minkowski space these are the
Lorentz transformations, including rotations and mirrorings. Scalar products are generally defined by an
expression quadratic in the coordinate vector, x. We therefore consider coordinate transformations that
leave a fixed quadratic form invariant. This is defined by a non-singular symmetric matrix, called the
metric or the metric tensor, g = g̃ = (gµν):

x · y = x̃gy = xµgµν y
ν , (0.64)

The important point is that this form is required to be invariant, i.e. it is the same in all coordinate
systems. In Minkowski space we have g = Diag[1,−1,−1,−1] = g−1. For the scalar product to be
invariant, one must have:

x′ · y′ = x̃Ã g Ay = x̃gy = x · y ⇐⇒ Ã g A = g ⇐⇒ g = Ã−1gA−1 , (0.65)
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for all coordinate transformations A preserving the scalar product. Multiplying this equation from the

right with A−1, one finds, using the symmetry, g̃ = g → g̃−1 = g−1:

g−1Ã g A = 1 ⇐⇒ A−1 = g−1Ã g ⇐⇒ Ã−1 = gAg−1 . (0.66)

From eq. (0.65) it follows that gµν is both invariant and transforms as a covariant tensor of rank 2.

(Ã−1 = Ã−1):

g = Ã−1gA−1 ⇐⇒ gµν = Ã−1
σ

µ Ã
−1

ρ

ν gσρ , (0.67)

One now defines the covariant components of any vector w by:

xµ = gµνw
ν . (0.68)

In particular for Minkowski space x0 = x0 = ct, xi = −xi, so xµ = [ct,−x]. It is easily checked that the

components of xµ forms a covariant vector. Using that from eq. (0.65) gA = Ã−1g, one finds:

w′µ = gµνw
′ν = gµνA

ν
λ w

λ = Ã−1
ν

µ gνλ w
λ = Ã−1

ν

µ wν . (0.69)

From eq. (0.67) we see that g−1 = (gµν) = (gνµ) transforms as an invariant covariant tensor of rank 2:

g−1 = Ag−1Ã ⇐⇒ gµν = AµσA
ν
ρg
σρ (0.67a)

Furthermore:
gµλgλν = gµλgνλ = gµλg

λν = gµλg
µλ = 1µν = 1µ

ν = δµν . (0.70)

Multiplying eq. (0.68) with g−1, we find:
wµ = gµνwν . (0.68a)

Thus we say that gµν lowers the index of a contravariant vector, while gµν raises the index of a covariant
one. By the same procedure one easily shows that gµν can be used to lower any contravariant tensor index,

converting it to a covariant one. Similarly, using that from eq. (0.66) it follows that g−1Ã−1 = Ag−1,
one finds that gµν can be used to raise any covariant index. Note that when rising and lowering indices,
their order must remain unchanged. As an example, if Tµνσρ is a tensor, we can form other tensors like:

Tµλσρ = gλσT
µν
σρ , Tµνλσ = gλσTµνσρ , etc .

We can, of course, rise and lower several indices at the same time, and rising and lowering performed in
different orders commute. In particular, we can rise an index of gµν , or lower one of gµν . Using eq. (0,70)
we find:

gµν = gµλgλν = δµν . (0.71)

Thus the mixed metric tensor is just nothing but the Kronecker symbol, or the unit matrix in matrix
notation.
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