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Tensors

A tensor is an algebraic object which is defined by its transformation properties under a linear coordinate
transformation. In general such a transformation transforms a vector v in a D dimensional real vector
space according to:

v′ = Av ⇐⇒ v′i = Aijvj , (0.43)

for some invertible matrix A = (Aij). Any D-component object transforming like this is called a vector
(under the transformation A). A scalar, ρ, under the same transformation is simply a quantity that does
not change:

ρ′ = ρ . (0.44)

Furthermore, assume that we have some homogenous linear relation between two vectors v and w, i.e. a
relation of the form:

w = M v ⇐⇒ wi = Mijvj , (0.45)

In order for this relation to be retain its form under the transformation, so w′ = M ′v′ for any vector v,
we must have:

w′ = Aw = AMv = AMA−1 v = M ′v′ .

This is achieved if M transforms as (cf. Goldstein p. 149):

M ′ = AMA−1 ⇐⇒ M ′ij = AikMklA
−1
lj = AikÃ−1jlMkl . (4.41)

Any quantity that transforms like this is called a (mixed) tensor of rank two under the transformation
A.

Normally one is interested in some set of linear transformations, such that two successive transformations,
obtained by matrix multiplication, the inverse transformations and the trivial transformation with A = 1
are members of the set. This means that the set of transformations constitutes a group. In order to
completely specify the tensor nature of a matrix, one has to specify the group of allowed transformations.

In Classical Mechanics, and many other applications, we are mostly interested in the group of proper

orthogonal transformations, the rotations, with A−1 = Ã and |A| = 1, in D = 3 dimensions. This leaves
eqs. (0.43) and (0.44) unchanged, while eq. (4.41) takes the particularly simple form:

M ′ij = AikAjlMkl . (4.41′)

M is then called an Euclidean tensor, or simply just a tensor, of rank 2.

This equation has a generalization which takes us beyond standard linear algebra. We consider objects
with N indices with transformations involving N orthogonal matrices, A, according to:

T ′i1i2...iN = Ai1j1Ai2j2 · · ·AiN jNTj1j2...jN . (5.10)

Such objects, taken collectively, are called tensors of rank N (under the rotation group), or are said to

transform as tensors under the group. Such a tensor clearly has DN components in D dimensions. In
particular a scalar is a tensor of rank 0, a vector one of rank 1 and a matrix a tensor of rank 2. An
abstract tensor, T is defined by the set of all its components, just like a matrix: T = {Ti1i2...iN }. Two
tensors T and U are equal if and only if they have the same components, Ti1i2...iN = Ui1i2...iN .
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The simplest example of such a tensor of rank N is the direct product, or the exterior product, of N
vectors, a,b, · · · z. This is simply defined as:

Ti1...iN = ai1bi2 . . . ziN . (0.46)

In a rotated coordinate system it has components:

T ′i1...iN = a′i1b
′
i2 · · · z

′
iN = Ai1j1aj1Ai2j2bj2 · · ·AiN jN zjN = Ai1j1Ai2j2 · · ·AiN jNTj1j2...jN , (0.47)

so eq. (5.10) is satisfied. If we want a coordinate free notation for such a tensor, we use the symbol ⊗:

T = a⊗ b · · · ⊗ z . (0.47′)

where T has the components Ti1...iN from eq. (0.46).

We note in passing that the direct product of 2 vectors is easily handled in matrix notation. For D=3:

a⊗ b = (aibj) = ab̃ =

 a1
a2
a3

 (b1, b2, b3) =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 6= b⊗ a = ˜a⊗ b . (0.48)

The trace of this direct product is just the scalar product:

Tr a⊗ b = aibi = ãb = a · b . (0.49)

It is left as an exercise to find that the eigenvalues of a⊗ b are a · b with eigenvector a, and 0, which is
doubly degenerate.

Eq. (0.49) has a very useful generalization. A contraction, a kind of a generalized trace, of a tensor is
defined as the object obtained by summing the components over any pair of indices. Thus if T is a tensor
of rank N, U defined by:

Ui3...iN = Tjji3...iN , (0.50)

is a contraction of T, as is Tji2...iN−1j and so on. Since any pair of indices can be contracted, there are

altogether 1
2N(N − 1) possible contractions of a tensor of rank N , which in general are different. They

have the useful property that a contraction of a tensor of rank N is a tensor of rank N − 2:

U ′i1...iN−2
= T ′jji1...iN−2

= Ajk1
Ajk2

Ai1k3
· · ·AiN−2kN

Tk1k2k3...kN
= δk1k2

Ai1k3
· · ·AiN−2kN

Tk1k2k3...kN

= Ai1k3
· · ·AiN−2kN

Tk1k1k3...kN
= Ai1k3

· · ·AiN−2kN
Uk3...kN

,

(0.51)
where we have used the orthogonality of A: AijAik = δjk. This is indeed the correct transformation law
for a tensor of rank N − 2.

Tensors often occur in applications when one generalizes the concept of a linear relation to matrices. As
an example, in continuum mechanics the general formulation og Hooke’s law of elasticity, stating that
forces are linearly proportional to deformations, but not necessarily acting in the same direction in an
anisotropic medium. This can be written as a tensor equation:

σij = CijklDkl ,

where σij is called the stress tensor, describing the forces on an element of the material, while Dij is
the shear tensor, describing the deformation (for further details, take the course in Petroleum Physics).
Because σij and Dij by construction transforms as matrices under rotations, i.e. they are tensor of rank
2, a straightforward generalization of the argument used to derive eq. (4.41) yields that Cijkl, which is
called the stiffness tensor, has to be a tensor of rank 4 under rotations. In the same manner one proves the
useful general result that if A is a tensor of rank M and B is a tensor of rank N which are proportional
in the above sense, i.e. there is a set of numbers Ci1...⊂M+N

such that:

Bi1...iN = Ci1...iN j1...jMAj1...jM , (0.52)

then the Ci1...iM+N
transforms as a tensor of rank M +N .
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A particularly useful tensor, of rank 3 for D = 3, is the Levi–Civita tensor, εijk (see the lecture notes for
25.09 2017). We already know that the triple product between three vectors a, b and c can be written:

a · b× c = εijkaibjck , (0.53)

But aibjck = (a⊗ b⊗ c)ijk are the components of a tensor of rank M=3, while the triple product is

a scalar, i.e. a tensor of rank N = 0, so by the above result, it follows that εijk is a tensor of rank
M +N = 3. It has the peculiar property that the components are the same in all coordinate system.

To see why the Levi–Civita tensor is useful, we note that the formula for a determinant for D = 3 can
be written:

|M | = M11M22M33 −M12M21M33 −M13M22M31 −M11M23M32 +M13M21M32 +M12M23M31

= εijkM1iM2jM3k = εijkMi1Mj2Mk3 . (0.54)

To interchange a pair of rows or columns of |M | is equivalent to interchanging two of the indices 1, 2, 3
on the right hand side of this equation. A series of such interchanges, which can generate an arbitrary
permutation 1, 2, 3→ l,m, n, will therefore generate a sign which is simply εijk. We can therefore write
eq. (0.54) as:

εlmn|M | = εijkMilMjmMkn = εijkMliMmjMnk . (0.54′)

Since εijk is a tensor of rank 3, we therefore have:

ε′ijk = AilAjmAknεlmn = εijk|A| = εijk , (0.55)

Since we have assumed |A| = 1, this confirms the invariance property of the Levi–Civita tensor.

However, if we enlarge our group to include improper orthogonal transformations, i.e. transformations
with |A| = −1, we see that the Levi–Civita tensor is no longer a tensor. To handle this case, a new concept
is introduced: The components Ti1...in form a pseudotensor if they have the transformation property;

T ′i1i2...iN = |A|Ai1j1Ai2j2 · · ·AiN jNTj1j2...jN Pseudotensor . (5.10a)

It is evident that the product of a tensor and a pseudotensor, possibly combined with one or more
contractions, is a pseudotensor, since the transformation formula will contain only a single |A|, while the

product of two pseudotensors yields a tensor, since |A|2 = 1. Because of the appearance the pseudotensor
εijk in the definition, the vector product forms a pseudovector from two vectors, while the scalar triple
product, eq. (0.53), forms a pseudoscalar, with the transformation law ρ′ = |A|ρ, from three scalars, etc.

Finally we note that in D dimensions one defines a Levi–Civita tensor of rank D, with D indices, in
complete analogy with eqs. (0.26) and (0.27). The obvious analogues of (0.54’) and (0.55) remain valid.
We also retain the definition of a pseudotensor.
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