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Hamilton's principle with constraints

In Goldstein sect. 1.3 it was shown how problems with holonomic constraints can be solved by choosing
generalized coordinates in such a way that the constraints are automatically obeyed. However, this is
not always practical. In this note, which is an abbreviated version of section 2.4 of Goldstein, we shall
discuss an alternative approach, based on Hamilton’s principle. This method can also be applied to
certain types of non-holonomic constraints. It works for constrained variational problems in general, but
we shall restrict ourselves to the case of Hamilton’s principle.

Let us assume that we have a problem were we know the Lagrangian L = L(q1, q2, . . . qn, q̇1, q̇2, . . . q̇n, t)
in terms of a set of n coordinates, {qi}ni=1, which are not independent, but subject to m constraints.
These may depend not only on {qi}, but also on the generalized velocities {q̇i}, but we shall exclude
cases in which they depend on higher time derivatives of the coordinates. Thus we assume that we have
m constraint relations:

fα(q1, q2, . . . qn, q̇1, q̇2, . . . q̇n, t) = 0 α = 1 . . .m . (2.24)

Such constraints which also contain the velocities are called semi-holonomic.

We now use a trick which may be known from elementary analysis, namely the introduction of Lagrangian
multipliers. We introduce a modified Lagrangian, which is a function of not only the qi’s, but also of m
new variables, {λα(t)}mα=1, as follows†:

L̂(q1, q2, . . . qn, q̇1, q̇2, . . . q̇n, λ1, λ2, . . . λm, t) = L+

m∑
α=1

λα(t)fα , (2.20)

We now consider Hamilton’s principle for this modified Lagrangian, assuming that all the m+n variables
{qi} and {λα} are independent:

δÎ = δ

∫ 2

1

L̂({qi}, {q̇i}, {λα}, t) dt = 0 . (2.26)

If we first vary with respect to λα, noting that λ̇α does not appear in L̂, we find the Euler–Lagrange
equations:

− d

dt

∂L̂

∂λ̇α
+

∂L̂

∂λα
=

∂L̂

∂λα
= fα = 0 ,

so we just recover the constraints of eq. (2.24). But this means that we can vary over all qi’s in the
variation in (2.26), because the constraints are automatically enforced by the variation over the λα’s (this
is where we use that fα should only depend on q̇i, and not higher time derivatives). Thus we find the
equations of motion:

d

dt

∂L̂

∂q̇i
− ∂L̂

∂qi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
−Qi = 0 i = 1 . . . n , (2.27)

where Qi contains all the terms involving the fα’s and the λα’s:

Qi =
∑
α

[
λα(t)

∂fα
∂qi
− d

dt

(
λα
∂fα
∂q̇i

)]
. (2.27′)

† There is a consistency problem with the signs of the λα’s in Goldstein. Note also that the book uses µα
as symbol of a Lagrangian multiplier in the semi-holonomic case.
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We see that we have obtained an expression for the constraining forces as the forces not derivable from

the potential energy V ‡. Note that we actually do not need to calculate the constraining generalized
force Qi acting on to qi separately. We just write eq. (2.27) as:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi

where the left hand side put equal to zero is the Euler–Lagrange equation for qi for the corresponding
unconstrained problem. The constraining force Qi on the right hand side is then the sum of all terms
containing the constraints and the Lagrangian multipliers.

In the holonomic case, when the fα’s do not contain the q̇i’s, the price of this method is that we must
solve n simultaneous differential equations for qi, in addition to the m constraint equations. In contrast,
if we are able to eliminate the constraints before deriving the Euler–Lagrange equations, we only have
to solve n − m equations. We also note that in the simplest cases, when the constraints simply hold
some of the generalized coordinates fixed, the constraint equations can be written fα = qα − cα = 0 for
some constants cα. Hence ∂fα/∂qi = δαi, and the corresponding generalized force is simply given by the
Lagrangian multiplier itself: Qα = λα.

For semi-holonomic constraints the constraint equations depend on the q̇i’s. From eq. (2.27’) we then
see that if the fα’s have a more complex dependence on q̇i than linear and/or quadratic terms, the
resulting equations of motion, eq. (2.27), will become quite ugly nonlinear equations. Hence the method
of Lagrangian multipliers in practice works only for simple semi-holonomic constraints.

Example

As a simple example of how to calculate the constraining force of a simple pendulum both using Newtons
2. law and Hamilton’s principle with constraints.

We consider small oscillations of a plane pendulum of mass m swinging in the gravitational field. We
choose coordinates such that x is horizontal and y vertical upwards, so the pendulum swings in the
xy-plane. The Lagrangian is then, with g as the acceleration of gravity:

L = T − V =
1

2
m(ẋ2 + ẏ2)−mgy .

Choosing plane polar coordinates r, θ, with θ measured from the negative y-axis, we have r = [x, y] =
r[sin θ,− cos θ], the Lagrangian becomes:

L =
1

2
m
(
ṙ2 + r2φ̇2

)
+mgr cos θ .

If the string is nor elastic, the constraint is r = a, the length of the pendulum, so ṙ = 0. With θ as
generalized coordinate, we have:

L =
1

2
mra2φ̇2 +mga cos θ .

The Euler–Lagrange equation for θ is then:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ma2θ̈ +mg sin θ = 0 .

For small oscillations, sin θ ≈ θ, and the equation of motion reduces to:

θ̈ + ω2θ = 0 ,

with ω2 = g/a. The general solution of this equation can be written:

θ = A cos(ωt+ δ) , θ̇ = −Aω sin(ωt+ δ) ,

‡ There is a serious printing error in Goldstein eq. (2.27).
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where A and δ are constants of integrations. If the pendulum is released from rest at t = 0 at an angle of

θ(0) = θ0, one has θ̇(0) = −A sin δ = 0, so δ = 0 (or δ = π, which gives the same result with A → −A),
and therefore θ(0) = A cos 0 = A = θ0. Hence the solution is θ(t) = θ0 cosωt.

To find the constraining force in the string, we remember from eq. (0.41) in the lecture notes for 01.09

that the centripetal acceleration, which must be provided by the string, for constant r = a is Fc = −maθ̇2.
In addition this force must compensate for the r-component of the gravitational force. Thus the total
force to be provided by the string is:

Fr = −mg cos θ −maθ̇2 = −m[g cos(θ0 cosωt) + aθ20ω
2 sin2 ωt]

≈ −mg[(1− 1

2
θ20 cos2 ωt) + θ20 sin2 ωt] = −mg[1 +

1

2
θ20(3 sin2 ωt− 1)] ,

where we have used g = aω2, cosφ ≈ 1− 1
2φ

2 for φ� 1 and cos2 φ+ sin2 φ = 1.

If we instead want to calculate Fr from Hamilton’s principle with constraints, we add the constraint
condition, f = r − a to the Lagrangian multiplied with a Lagrangian multiplier λ(t), according to eq.
(2.20):

L̂ =
1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos θ + λ(r − a) .

We then have to solve three simultaneous equations:

λ :
d

dt

∂L̂

∂λ̇
− ∂L̂

∂λ
= −(r − a) = 0 ,

r :
d

dt

∂L̂

∂ṙ
− ∂L̂

∂r
= mr̈ −mrθ̇2 −mg cos θ − λ = 0 ,

θ :
d

dt

∂L̂

∂θ̇
− ∂L̂

∂θ
= mr2θ̈ + 2mṙθ̇ +mg sin θ = 0 .

The first of these equations reproduces the constraint. Inserting this in the last equation leads to the
previous equation of motion. The middle equation yields the constraining force, i.e. the string tension:

Q = λ = −mg cos θ −maθ̇2 = Fr ,

as before.
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