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Vector, or cross, product

In contrast to the scalar product, which can be defined (in many ways) in any number of dimensions, the
vector product, or cross product, is only defined as such in 3 dimensional space. There are several possible
definitions. In terms of vector components, it can be defined as:

r× s = [r2s3 − r3s2, r3s1 − r1s3, r1s2 − r2s1] = −s× r . (0.21a)

The last relation is obtained by just interchanging the components of r and s in the definition. It can
equivalently be written as a determinant:

r× s =

∣∣∣∣∣∣
i j k
r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣ = (r2s3 − r3s2)i + (r3s1 − r1s3)j + (r1s2 − r2s1)k , (0.21b)

where we have expanded the determinant by rows. It immediately follows that the vector product of a
vector with itself vanishes:

r× r = −r× r = 0 . (0.21c)

By a careful choice of coordinates, it is not difficult to show that (see Problem 3):

|r× s| = rs | sin θ| , (0.22)

where θ is the angle between the vectors r and s (cf. eq. (0.7)). Geometrically this is the area of the
trapezoid, or twice the area of the triangle, spanned by the vectors r and s, and hence a scalar quantity,
independent of the choice of coordinate system. In particular, it follows from eq. (0.22) that if r× s = 0
and rs 6= 0, then θ = 0 or π, so r and s are parallel or antiparallel.

From eqs. (0.7), (0.22) and the trigonometric identity cos2 θ + sin2 θ = 1 finds:

(r · s)2 + |r× s|2 = r2s2 . (0.23)

By explicit calculations, we find that the triple product r · (s× t) obeys:

r · (s× t) = (r× s) · t = s · (t× r) = t · (r× s) = −s · (r× t) = . . .

= r1s2t3 − r1s3t2 + r2s3t1 − r2s1t3 + r3s1t2 − r3s3t2 ,
(0.24a)

Evidently the triple product is unchanged by a cyclical permutation of the vectors or if the scalar and
vector multiplication signs are switched. If two vectors are interchanged, the sign of the answer is
switched. Also note that since the expression (r ·s)×t makes no sense, as we cannot take a cross product
of the scalar r · s with the vector t, we can drop the parentheses, and just write: r · s× t=r× s · t.

From eqs (0.24) and (0.21c) it follows that if two of the vectors in a triple product are equal, the result
is zero:

r · r× s = r× r · s = 0 . (0.24b)

Hence r× s is perpendicular to both r and s.
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By differentiating the definition in eq. (0.21a) one finds that the rule for differentiating a vector product
is the same as for a scalar product:

d

dt
r× s = · · · = ṙ× s + r× ṡ. (0.25)

It should be noted that if one restricts oneself to a two-dimensional space, simply by putting r3 = s3 = 0,
one finds:

r× s = [0, 0, r1s2 − r2s1] = (r1s2 − r2s1)k , (0.21d)

but this is a vector pointing in the z-direction, and so not a vector in the two-dimensional space spanned
by r and s. In two dimensions the cross product can instead be defined as a scalar.

In 3 dimensions the vector product gives us a convenient way to construct a right handed coordinate
system with two of its axes pointing along two given orthogonal vectors, say a and b, with a · b = 0. If

c = a× b, then c is orthogonal to both a and b, and the corresponding unit vectors â, b̂ and ĉ, in that

order, forms the basis of a right-handed (check!) coordinate system, as do (b̂, ĉ, â) and (ĉ, â, b̂).

The Levi�Civita tensor

In order to simplify manipulations with cross products, it is useful to introduce the permutation symbol
εijk (i, j, k = 1.2, 3), better known to physicists as the Levi–Civita Tensor (we shall briefly come back
to the concept of a tensor later in this course). It is defined as 1 if {i, j, k} is an even permutation of
{1, 2, 3}, −1 if it is an odd permutation, and 0 if two indices are equal. Thus:

ε123 = ε231 = ε312 = 1 ; ε132 = ε213 = ε321 = −1 : εijk = 0 otherwise . (0.26)

We see that we have:
εijk = εjki = εkij = −εikj = −εkji = −εjik . (0.27)

In other words, the component of the vector product are given by: (a× b)k = εijkaibj .

From this it follows that (with the summation convention):

εijk aibjek = a1b2e3 + a2b3e1 + a3b1e2 − a1b3e2 − a2b1e3 − a3b2e1 = a× b . (0.28)

The usefulness of this relation is due to the formula:

εijk εlmk = δilδjm − δimδjl . (0.28)

Here δij is Kronecker’s delta:

δij =

{
1, if i = j;
0, i 6= j,

(0.29)

which ar nothing but the matrix elements of the unit matrix. The usefulness of this symbol follows from

the observation that for any function f(i) we trivially have
∑N

j=1 f(j) δij = f(i). We also have, using the
summation convention:

δii =

N∑
i=1

δii = N . (0.30)

Eq. (0.28) can be proven by noting that for each value of k in the sum either i = l and j = m, in which
case εijk εlmk = εijk εijk = 1 or i = m and j = l, in which case εijk εlmk = εijk εjik = −1, and each such
term only occur once.

From this result it further follows:

εijk εljk = δilδjj − δijδjl = 3δil − δil = 2δil ,

εijk εijk = 2δii = 6 = 3! .
(0.31)

The last result is actually trivial, because in the sum
∑

ijk ε
2
ijk, according to (0.26) each nonvanishing

term is equal to 1, and there are 6 such terms.

These formulas can be used to prove useful identities like:

a× (b× c) = εijk ai(b× c)j ek = εijk ai εlmj blcm ek = −εikj εlmj aiblcm ek

= −(δilδkm − δimδkl) aiblcm ek = −(aibi)(ckek) + (aici)(bkek) = b(a · c)− c(a · b) .
(0.32)

This is sometimes called the “bac-cab” rule.
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