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Introduction

Before we start with the textbook, it may be useful to make a quick review of some basic material from
elementary mathematics and mechanics. This will also serve to establish the notation we shall use in the
course.

In Classical Mechanics we assume, with Isaac Newton, that we live in an 3-dimensional Euclidean space,
and that time passes uniformly at the same constant rate everywhere. This is only an approximation
to the real world, but it is an excellent one in many cases. We must restrict ourselves to events which
take place locally, say within a radius of a few billion light-years and well away from black holes, on time
scales much shorter than 10 billion years, and to objects moving slowly relatively to the speed of light.
The last restriction will be lifted when we come to the Special Theory of Relativity in chapter 7.

Another well-known restriction on Classical Mechanics is that it can only be regarded as an approximation
to the more fundamental Quantum Mechanics, which applies on atomic length scales. However, for
distances longer than a few atomic diameters, say 0.2 nanometers, or so, Classical Mechanics become
surprisingly accurate for most processes. This is to some extent guaranteed by the equations of motion
of non-relativistic Quantum Mechanics, because the average values of quantum mechanical dynamical
variables satisfy the corresponding classical equations [Ehrenfest’s principle].

Mathematical preliminaries

We know that in an Euclidean space we can introduce orthogonal coordinate systems, such that the
position of any point P can be uniquely specified by giving three coordinates, which are real numbers,
say x, y and z. We have also learned that it is extremely convenient to consider these three numbers
together as a single entity, a vector. In standard linear algebra notation, we can write it as a column
vector:

r =

xy
z

 . (0.1a)

In mechanics it is common to write vectors with boldface type. In handwriting we use an arrow above
the symbol, ~r, or an underline, r.

We call the individual coordinates the components of the vector. It is often useful to consider the
coordinate vector, r, as the fundamental object, and to have a notation which makes it clear that the
coordinates are the components of the same vector. We shall therefore often use naming conventions like
x = rx = r1, y = ry = r2 and z = rz = r3 for the components of a vector. Thus:

r =

xy
z

 =

 rxry
rz

 =

 r1r2
r3

 . (0.1b)

Two vectors are equal if and only if they have the same components.

Instead of writing vectors as column vectors, we can equally well have written them as row vectors. In
linear algebra, this is done by introducing the transpose of a vector r:

rT = [x, y, z] = [rx, ry, rz] = [r1, r2, r3] . (0.2)
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We see that there is a trivial one-to-one correspondence between a vector and its transpose, and most
of the time no confusion will arise by not distinguishing between them. Since it is typographically more
convenient, we shall use the row vector notation of eq. (0.2) most of the time, dropping the T.

Vectors are added and multiplied by numbers by performing the operations for each component separately,
so if r = [r1, r2, r3] and s = [s1, s2, s3], then:

r + s = [r1 + s1, r2 + s2, r3 + s3] = s + r , (0.2a)

cr = [cr1, cr2, cr3] , (0.2b)

where c is a number. We can obviously also subtract vectors and divide by numbers in the same manner.
We can exploit this to introduce three basis vectors:

i = ex = e1 = [1, 0, 0] ; j = ey = e2 = [0, 1, 0] ; k = ez = e3 = [0, 0, 1] . (0.3)

By using eqs. (0.2) repeatedly, we see that we can expand any vector r in terms of these basis vectors as:

r = [x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1] = x i + y j + z k

= rxex + ryey + rzez = r1e1 + r2e2 + r3e3 =

3∑
i=1

riei =
∑
i

riei ≡ riei .
(0.4)

In the next to the last step, we have introduced the convention that if the number of components of a
vector is obvious, we need not bother to record it. In the last step, writing r = riei, we have introduced:

Einstein’s summation convention: If a vector index appears exactly twice in a product, a sum
over all possible values of that index is implied.

Goldstein uses this convention from chapter 4 on. All the above ways of writing coordinate vectors are
in common usage, and we will switch freely between them, in order to get used to all of them. We shall
also adopt the usual physicist’s convention that if a = aiei is a N -dimensional vector, and we talk about
ai, we mean all the ai for i = 1, . . . N , unless something else is explicitly stated. The same applies to a
basis vector ei.

In the above discussion, the number N = 3 of space dimensions does not play any important mathematical
role. If we index the vector components and basis vectors by numbers, we can define vectors in the same
manner for any number of components N = 1, 2, 3, . . . (the case N = 1 is, of course, trivial). Any
set (collection) of objects for which eqs. (0.2) are well defined and valid, is called a vector space. The
components, ri, can be taken to be any kind of numbers we like, integers, rational numbers, reals, complex
numbers or something else, as long as addition and multiplication are well defined and commutative, i.e.
rirj = rjri. In Classical Mechanics we shall mostly need N = 3, the simpler case N = 2 and the trivial
case N = 1, all with real components, but vector spaces of higher dimensions prove very useful in many
other contexts. Thus we shall have use for N=4 in special relativity. Indeed, we may even let N = ∞,
with components that are complex numbers. The resulting vector space is known as the Hilbert space,
well known from non-relativistic quantum mechanics. In the following, we shall continue to use N = 3
for definiteness, but the results will remain valid for any N , unless something else is explicitly stated.

A real Euclidean space has more structure than just being a vector space. As is well known, it is equipped
with a (commutative) scalar product (dot product), defined as:

r · s = rTs = [r1, r2, r3]

 s1s2
s3

 = r1s1 + r2s2 + r3s3 =

3∑
i=1

risi =
∑
i

risi = risi = s · r = sTr , (0.5)

where the Einstein convention is used in the third last step. This can be used to express the length, r, of
a vector r as:

r2 = r2 = r · r = rTr = x2 + y2 + z2 = r2x + r2y + r2z = r21 + r22 + r23 =

3∑
i=1

r2i =
∑
i

r2i = riri . (0.6a)

r = |r| =
√
r2 =

√
x2 + y2 + z2 = . . . =

√
riri . (0.6b)
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Geometrically, this is nothing but the Pythagorean Theorem.† We see that any vector r, except the null
vector 0 = [0, 0, 0], have length r = |r| > 0. Note that we have used the same letter written with different
typefaces to distinguish between the vector r, written in bold, and its length r = |r|, written in italic.
In handwriting, we just drop the vector symbol for the length. We shall often employ this convention in

these notes. Also note that when using the Einstein convention, we do not write r =
√
r2i , because in

the expression r2i the index, i, is not appearing twice, as it is in riri.

If r and s are two vectors of length r = |r| and s = |s|, the angle between them, θ (0 ≤ θ ≤ π), can be
found from the well known formula:

r · s = rs cos θ . (0.7)

This formula is valid in any number, N , of dimensions. If θ = π/2 we have r · s = 0, and we say that the
vectors are orthogonal, or perpendicular, to each other. We also write this as r ⊥ s.

From eqs. (0.4) and (0.5) we then find the length of the sum and difference of two vectors from:

|r± s|2 = (r± s)
2

= r2 + s2 ± 2r · s = r2 + s2 ± 2rs cos θ . (0.8)

Geometrically, this is the well known Extended Pythagorean Theorem.

Two vectors, r and s, are colinear if s = c r for some number c 6= 0. From eqs. (0.6) we find in this case

s = |s| =
√
c2r2 =

√
c2|r| = |c|r. In the last step we have to be a little careful, and write =

√
c2 = |c|,

because of our convention that square roots of positive numbers are taken to be positive, while c might
be negative. From eq. (0.7) we then have:

r · s = cr2 = cr2 = rs cos θ = |c|r2 cos θ ,

so cos θ = c/|c| = ±1. If c > 0 we have cos θ = 1 and θ = 0, and the vectors are parallel, pointing in the
same direction. If c < 0, cos θ = −1 and θ = π. We say that the vectors are anti-parallel, pointing in
opposite directions. From eq. (0.8) we find that for parallel vectors we have |r ± s| = |r ± s| = |1 ± c|r,
for anti-parallel ones |r ± s| = |r ∓ s| = |1 ∓ c|r. In many situations, we do not distinguish parallel and
anti-parallel vectors, and call all colinear vectors for parallel. We write r ‖ s.
A vector e of unit length, |e| = 1, is called a unit vector. From the definitions (0.3) and (0.5), we see that
the basis vectors are all unit vectors, |i| = |j| = |k| = |ei| = 1 (i = 1, 2, 3, or i = 1 . . . N in the general
case). Different basis vectors are found to be orthogonal from eq. (0.5): i · j = j · k = k · i = ei · ej = 0
(i 6= j). We normally prefer to work with such orthonormal coordinate systems, i.e. coordinate systems
where the basis vectors are orthogonal unit vectors.

For any vector r, except the null vector, r = |r| > 0, and we can write:

r = r r̂ ⇐⇒ r̂ =
1

r
r =⇒ |r̂| = 1

r
|r| = 1 . (0.9)

Thus r̂ is a unit vector, parallel to r (since r > 0), and is said to point in the direction of r. We use this
notation also for more complicated vector expressions, like:

r̂− s =
r− s

|r− s|
.

Using the definition of the scalar product and that basis vectors are orthogonal unit vectors, we can
express the components of a vector r as:

x = [x, y, z]

 1
0
0

 = r · i , y = r · j , z = r · k . (0.10a)

or more generally:
ri = r · ei , (i = 1, 2, 3) , (0.10b)

(or i = 1 . . . N in the case of a vector in N dimensions).

As they stand, the above results only apply to Euclidean spaces, with a scalar product given by eq. (0.5),
or, equivalently, the length, also called the norm, given by eqs. (0.6). But it is often useful to introduce
other norms, which may not have a natural interpretation as a length, in a vector space. Such spaces are
then called normed spaces. One often defines the norm to be positive definite, i.e. |r| > 0 for any vector
r 6= 0. But this is not always done. Indeed, we shall se that the space-time of special relativity has the
geometry of the Minkowski space, with a scalar product that is not positive definite.

† In this course the symbol
√
x for x > 0 stands for the positive square root of x
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Coordinate systems

We have defined Euclidean spaces, and more generally vector spaces, in terms of vector components. This
implies that we have chosen a specific system of coordinates. But this is not necessary. To the contrary,
an important point about coordinate systems is that they are introduced by us to simplify our analysis.
We can choose them freely in order to make our analysis as simple as possible. Thus, measurable physical
quantities, like the distance between two points, or the angle between two (straight) lines, do not depend
on our choice of coordinate system. Quantities that do not change when we change coordinates are called
scalars. Thus lengths and angles are such scalars, and from eq. (0.7) it then follows that the scalar
product is indeed also a scalar. Other scalars which we frequently encounter in physics are volume, area,
mass, density, electric charge, pressure, temperature, . . . . Mathematically, scalars are represented by
pure numbers, but as physicists we shall almost always have a measurement unit associated with them.

If we chose to work with a different coordinate system, the coordinates of a given point will change, so
that x, y, z −→ x′, y′, z′ (or ri −→ r′i), where x′, y′ and z′ (or r′i ) in general are different numbers from
x, y and z (or ri).

† The precise relation between the primed and the unprimed coordinates of course
depend on our choice of coordinate systems.

The simplest case of coordinate transformations is a translation, which amounts to a change of origin
for the coordinates. This is simply done by adding a constant vector, a = [ax, ay, az] to our coordinate
vectors:

r′ = [x′, y′, z′] = r + a = [x+ ax, y + ay, z + az] , ⇐⇒ r′i = ri + ai . (0.11)

Obviously, r = r′ − a. We se that a translation transforms the original origin, O, with coordinate vector
rO = [0, 0, 0], to r′O = rO +a = a. Thus the vector a is just the position of the original origin O expressed
in the new coordinate system. Similarly, the new origin, O′, with new coordinates r′O′ = [0, 0, 0], has
coordinates rO′ = r′O′ − a = −a in the original coordinate system. Note that when we work with the
components of vectors which also have indices themselves, we may have to watch out to keep the notation
unambiguous. Thus if we introduce r1 = [x1, y1, z1] and want to have a more compact notation, we write
r1 = (r1)iei = r1i ei in the Einstein notation.

The length of a coordinate vector is obviously changed by a translation. In particular |rO| = 0 while
|r′O| = |a| > 0, unless a is the null vector. But the physical interpretation of the length of a coordinate

vector r = [x, y, z] is that r = |r| =
√
x2 + y2 + z2 is the distance of the point from the origin of the

coordinates, and that distance will of course change with a change of the origin. If we compute the
distance, d, between two points with coordinate vectors r = [rx, ry, rz] and s = [sx, sy, sz], so d = |r− s|,
we find in the primed coordinate system:

d′ = |s′ − r′| = |s + a− r− a| = |s− r| = d . (0.12)

Thus we see that distances between points are indeed left unchanged, or invariant, by a translation, and
so is a scalar.

The other important class of coordinate transformations is the rotations about some fixed point, which
we can always arrange to be the origin, since we can always perform a translation first, if necessary.
Rotations leave lengths and angles invariant, and consequently also scalar products. If we rotate our
coordinate system, the basis vectors will also rotate, so ei −→ e′i. But since angles and lengths are not
changed, the rotated basis vectors, e′i, still represent an orthogonal coordinate system, on par with the
original set ei.

Even without actually performing any rotations, we often exploit the freedom to choose the orientation
of the coordinate systems to simplify a problem. This is in particular useful if we manage to reduce the
number of coordinates needed to describe a system, like if we can reduce a three-dimensional problem to
an effectively two-dimensional one. In such cases we may choose coordinates so that one of them, often
z, remains constant, preferably 0, throughout the problem, and so all vectors reduce to two-dimensional
ones. As we shall learn, this can always be done for motion in the Earth’s gravitational field, and also
for the two-body problems both for Newton’s law of gravity and for Coulomb’s law for electric charged
particles.

We shall defer any further discussion of rotational invariance to chapter 4.

† Note that in this course, as is usual in theoretical physics, a prime on a variable, like in x′, does not
in general signify a derivative, even if x is a function. Hence x′(t) will typically be some function of t,
which is distinguished from some other function x(t). Normally we shall use the Leibnitz notation for
derivatives, so the derivative of x(t) will be written as dx/dt, except for time derivatives, where we shall
mostly use Newton’s dot-notation: ẋ = dx/dt. Only sometimes in mathematical manipulation will it be
convenient to let x′(t) represent the derivative of x(t).
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