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Problem 1

a) From the coordinate vector:

r = [ρ cosφ, ρ sinφ, z] ,

with ρ =
√
x2 + y2 we find

ṙ = ρ̇ [cosφ, sinφ, 0] + ρφ̇ [− sinφ, cosφ, 0] + ż [0, 0, 1] = ρ̇ eρ + ρφ̇ eφ + ż k .

One easily checks that {eρ, eφ,k} form an orthonormal set of vectors, so:

ṙ2 = ρ̇2 + ρ2φ̇2 + ż2 .

b) Since the particle is constrained to move on a cylindrical surface with ρ = a, one has ρ̇ = 0. If the

angle φ is measured from the horizontal plane, we have ψ = π
2 − φ and ψ̇ = −φ̇. The height of

a point on the cylinder above the horizontal plane is h = a cosψ, so the gravitational potential is

V = mgh = mga cosψ. Thus the Lagrangian is:

L = T − V =
1

2
m
(
a2ψ̇2 + ż2

)
−mga cosψ .

The conjugate momenta to ψ and z are:

pψ = ` =
∂L

∂ψ̇
= ma2ψ̇ , pz =

∂L

∂ż
= mż .

The Hamiltonian then is:

H = pψψ̇ + pz ż − L =
1

2
m
(
a2ψ̇2 + ż2

)
+mga cosψ .

The Lagrangian does not contain z, so this is a cyclical coordinate, and therefore pz is conserved.

Furthermore, L is time independent, so H = E is also conserved. [This needs not to be shown.]

c) Since pz is conserved, we have, with ż(0) = v0, z(0) = z0:

pz = mż(t) = mż(0) = mv0 ⇐⇒ z = v0t+ z0 .

The equation of motion for ψ is the Euler–Lagrange equation:

∂L

∂ψ̇
= ṗψ = ma2ψ̈ =

∂L

∂ψ
= mga sinψ .

Multiplying this equation with ψ̇, we see that it can be written:

ψ̇
(
ma2ψ̈ −mga sinψ

)
=
ma2

2

d

dt

(
ψ̇2 +

2g

a
cosψ

)
= 0 ,

and the stated result follows. Equivalently, and even simpler, one finds from energy conservation:

ψ̇2 +
2g

a
cosψ =

2

ma2

(
E − 1

2
mż2

)
=

2

ma2

(
E − 1

2
mv20

)
= C ,

a constant.
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d) We have two alternative approaches. One is to start with Newton’s second law of motion in the radial

direction for the unconstrained problem. This reads:

d

dt

∂L

∂ρ̇
− ∂L

∂ρ
= m

(
ρ̈+ ρψ̇2 − g cosψ

)
= Fr ,

since mρψ̇2 is the centrifugal acceleration.

Alternatively, one can use the method of Lagrangian multipliers. With λ(t) as the multiplier intro-

duced to enforce the constraint ρ = a, the modified Lagrangian becomes:

L̃ = T − V − λ(ρ− a) =
1

2
m
(
ρ̇2 + a2ψ̇2 + ż2

)
−mga cosψ + λ(ρ− a) .

Variations with respect to λ just reproduces the constraint, the equation for ψ remains the same

as before, while ρ-equation reproduces the previous equation, with Fr = λ, in accordance with the

lectures. [Only one of these approaches is required.]

As long as the particle remains at the cylinder surface, ρ = a, so ρ̇ = 0, the constraining force is:

Fr(ψ) = m
(
aψ̇2 − g cosψ

)
.

e) The condition for the particle to remain on the cylinder is Fr(ψ) ≥ 0, since the reaction force from

the cylinder can only push the particle outward. Thus the particle slides off the cylinder when:

Fr(ψc) = 0 ⇐⇒ ψ̇2|ψ=ψc
=
g

a
cosψc .

Using the equation of motion for ψc and using that from the initial conditions one finds C as:

C = ψ̇(0)
2

+
2g

a
cosψ0 =

2g

a
cosψ0 → 2g

a
.

Using this in the equation for ψc, we find:

ψ̇2|ψ=ψc
= C − 2g

a
cosψc =

2g

a
(1− cosψc) =

g

a
cosψc ,

cosψc =
2

3
, ψc = arccos

2

3
≈ 0.841 = 48.2

◦
.

The angular velocity when ψ = ψC is

ωc = ψ̇c =

√
g

a
cosψc =

√
2g

3a
,

where the positive root has been chosen, since the particle is sliding down the cylinder.

f) After leaving the cylinder the particle moves in a parabolic orbit in the gravitational field, with an

initial position at ρ = a, ψ = ψc and initial velocity components ρ̇ = 0, ψ̇ = ωc. From energy

conservation, in the limit ψ0 → 0, the velocity vf reaching the horizontal plane is:

1

2
mv2f = mga ⇒ vf =

√
2ga .

g) After leaving the cylinder the particle moves with constant horizontal velocity. The moment it leaves

it the speed is aωc in direction eψ = −eφ = −[− sinφ, cosφ, 0] = [cosψ,− sinψ, 0] for ψ = ψc (see

part a above). The horizontal velocity is thus:

vx = aωc cosψc =

√
8ga

27
.
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It hits the ground with at an angle given by:

cosφf =
vx
vf

=

√
2

27
→ φf = arccos

2

27
≈ 1.50 = 85.8

◦
.

Problem 2

a) By Newton’s second law momentum is conserved for any system if there are no external forces acting

on it. Therefore the combined lump must continue to move in the x- direction, which is the direction

of the conserved total momentum, P. The conservation of P = |P| then yields:

P = m1v = (m1 +m2)v′ =⇒ v′ =
m1

m1 +m2
v .

With E and E′ as the energies before and after the collision, respectively, we find the energy loss, Q,

as:

E =
1

2
m1v

2 , E′ =
1

2
(m1 +m2)v′

2
=

1

2

m2
1

m1 +m2
v2 , Q = E − E′ =

1

2

m1m2

m1 +m2
v2 > 0 .

We see that some of the kinetic energy of the incoming particle has been lost in the collision. It has

been converted into heat.

b) The new coordinates are:

R =
1

m1 +m2
(m1r1 +m2r2) , r = r2 − r1 .

The center of mass velocity is V = Ṙ. After the collision r1 = r2 and ṙ1 = ṙ2 = v′i, so:

V = Ṙ =
1

m1 +m2
(m1v

′ +m2v
′) i = v′i = Ẋi .

[This can be done in several ways.] After the collision the lump is at rest in the center of mass, so

E′CM = 0.

c) The mass of a sphere of constant density d is m = 4π
3 da

3. Introducing standard cylindrical coordinates

ρ, φ, z with origin at the center o fthe sphere, r = [ρ cosφ, ρ sinφ, z], and taking the axis of rotation

to be the z-axis, the interior of the sphere is the region ρ2 + z2 < a2. Thus the moment of inertia

about any axis is:

I0 =

∫
m

(
x2 + y2

)
dm = d

∫ a

−a
dz

∫ √a2−z2
0

ρ2ρ dρ

∫ 2π

0

dφ = 2
2π

4
d

∫ a

0

(
a2 − z2

)2
dz

= πd

(
a4z − 2

3
a2z3 +

1

5
z5
) ∣∣∣∣∣

a

0

=
8π

15
da5 =

2

5
ma2 .

[This can also be done in standard spherical coordinates, using x2 + y2 = r2 sin2 θ and substituting

ξ = cos θ so dξ = − sin θdθ:

I0 = 2πd

∫ a

0

r4 dr

∫ π

0

sin3 θd θ =
2π

5
a5
∫ 1

−1

(
1− ξ2

)
dξ =

8π

15
da5 =

2

5
ma2 .]

d) From Steiner’s rule one finds the moment of inertia about an axis tangent to the sphere as:

I ′ = I0 +ma2 =

(
2

5
+ 1

)
ma2 =

7

5
ma2 .
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Since the two identical lumps have a common tangent at their point of contact, which becomes the

common rotation axis after the collision, we find:

I =

∫
m1+m2

(y2 + z2) dm = 2I ′ =
14

5
ma2 .

e) In the center of mass system, before the collision the lumps approach each other with oppositely equal

momenta, so the total momentum, which is conserved, is zero. Hence the compound lump is at rest.

Each of the incoming particles approach the collision with velocity v/2 and impact parameter a, but

on opposite sides of the center of mass. Angular momentum conservation then yields:

L = 2m
v

2
a = mav = Iω =⇒ ω =

mav

I
=

5v

14a
.

The final rotation energy is:

E′R =
1

2
Iω2 =

5

28
mv2 .

The initial energy for any impact parameter, with m1 = m2 = m, is:

ECM = 2
1

2
m
(v

2

)2
=

1

4
mv2 .

For a central collision, the energy loss is thus:

Q0 = ECM − E′CM =
1

4
mv2 ,

while for the glancing collision it is:

QR = ECM − E′R =
1

14
mv2 .

so QR < Q0. This has to be so, because in the central collision, there is no motion after the merger,

so the kinetic energy loss is maximal, while in the glancing case, there is still rotational energy in the

final state.

f) The four-momentum is conserved, because there are no external forces acting on the system, and

hence in particular no time-dependent forces. With

γ =
1√

1− (v/c)
2
, γ′ =

1√
1− (v′/c)

2
,

we can write the equations for momentum conservation in the x=direction and energy conservation

as:

γm1v = γ′m′v′ , γm1c
2 +m2c

2 = γ′m′c2 ,

where m′ is the rest mass of the single lump after the collision. Introducing µ′ = m′/m1 and

µ2 = m2/m1, energy conservation can be written µ′γ′ = γ + µ2, which inserted in the momentum

equation yields:

γv = µ′γ′v′ = (γ + µ2)v′ =⇒ v′ =
γ

γ + µ2
v .

From this follows:

γ′ =
1√

1− v′/c2
=

γ + µ2√
(γ + µ2)

2 − γ2v2/c2
=

γ + µ2√
1 + 2γµ2 + µ2

2
,

so

m′ = µ′m1 =
γ + µ2

γ′
m1 =

√
1 + 2γµ2 + µ2

2m1 .

[One sees that m′ =
√

1 + 2γµ2 + µ2
2m1 >

√
1 + 2µ2 + µ2

2m1 = (1 + µ2)m1 = m1 + m2, so the

lost kinetic energy in the non-relativistic calculation is reflected by an increased rest mass in the

energy-conserving relativistic case].
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