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Problem 1

a) The mass of a sphere of constant density d is M = 4π
3 da

3. Using standard cylindrical coordinates

ρ, φ, z centered at the center of the ball, so r = [ρ cosφ, ρ sinφ, z], and taking the axis of rotation to

be the z-axis, the interior of the sphere is the region ρ2 + z2 < a2. Thus:

I =

∫
M

(
x2 + y2

)
dM = d

∫ a

−a
dz

∫ √a2−z2
0

ρ2ρ dρ

∫ 2π

0

dφ = 2
2π

4
d

∫ a

0

(
a2 − z2

)2
dz

= πd

(
a4z − 2

3
a2z3 +

1

5
z5

) ∣∣∣∣∣
a

0

=
8π

15
da5 =

2

5
Ma2 .

[This can also be done in standard spherical coordinates, using x2 + y2 = r2 sin2 θ and substituting

ξ = cos θ so dξ = − sin θdθ:

I = 2πd

∫ a

0

r4 dr

∫ π

0

sin3 θdθ =
2π

5
a5

∫ 1

−1

(
1− ξ2

)
dξ =

8π

15
da5 =

2

5
Ma2 .]

b) The rolling condition is that the point of contact between ball and bowl is at rest with respect to

both at all times. It must thus move at the same rate relative to both, so:

ds = a dφ = bdΦ ⇐⇒ aω = bΩ .

c) Since the radii of both ball and bowl

have a common tangent at the point

of contact, this and the centers of ball

and bowl lie on a straight line. The

distance between the centers is then

b − a, and from the figure right we

immediately read off:

z = b− (b− a) cos Φ .

a

Φ

φ

z

b−a

b

g

d) Since the center of mass of a sphere is at its center, Chasle’s (Euler’s) theorem says that the instan-

taneous motion of any point of the ball is the sum of the motion of the center of mass, with velocity

(b− a)Ω, and the rotation of the ball about the center, with angular velocity ω. The Lagrangian can

then be written, using the previous three parts of the problem:

L = T − V =
1

2
M(b− a)

2
Ω2 −Mgz +

1

2
Iω2

=
1

2
M

(
b2 − 2ab+ a2 +

2

5
a2 b

2

a2

)
Φ̇2 +Mg(b− a) cos Φ−Mgb

=
1

2
M

(
7

5
b2 − 2ab+ a2

)
Φ̇2 +Mg(b− a) cos Φ−Mgb .
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Since L only contains a quadratic term in Φ̇, the Hamiltonian follows immediately as:

H = T + V =
1

2
M

(
7

5
b2 − 2ab+ a2

)
Φ̇2 −Mg(b− a) cos Φ +Mgb .

Alternatively, H can be calculated from the canonical momentum,

pΦ = ∂L/∂Φ̇ = M

(
7

5
b2 − 2ab+ a2

)
Φ̇ ,

and H = pΦΦ̇− L.

e) From the Euler–Lagrange equations one finds the equation of motion as:

d

dt

∂L

∂Φ̇
= ṗΦ = M

(
7

5
b2 − 2ab+ a2

)
Φ̈ =

∂L

∂Φ
= −Mg(b− a) sin Φ .

For small oscillations sin Φ ≈ Φ, so the equation simplifies to:

Φ̈ + Ω2
sΦ = 0 ; Ωs =

√
g(b− a)

7
5b

2 − 2ab+ a2
.

Here Ωs is the frequency of oscillation. [We see that Ωs → 0 when a → b, as it must.] The general

solution of the equation is:

Φ(t) = A cos(Ωst) +B sin(Ωst) ,

where A and B are constants of integration. From the boundary conditions, Φ(0) = Φ0 = A and

Φ̇(0) = Ω0 = BΩs, so B = Ω0/Ωs. [The solution can also be written Φ(t) = C cos(Ωst− δ), with

C =
√
A2 +B2 =

√
Φ2

0 +

(
Ω0

Ωs

)2

, δ = arctan
B

A
= arctan

(
Ω0

ΩsΦ0

)
.]

Problem 2

a) The Lorentz force, F = q(E + ṙ×B), has the following Cartesian components for the given fields:

Fx = qẏB0 ; Fy = q(E0 − ẋB0) ; Fz = 0 .

The work done by the magnetic field during a small displacement dr = ṙ dt is

dW = F · dr = qṙ×B · ṙ dt = 0 ,

by the properties of the vector triple product.

b) With the fields as given we find Φ = −E0y, A = 1
2 [−B0y,B0x, 0]. This is consistent, since:

−∇Φ− ∂A
∂t

= [0, E0, 0] = E ; ∇×A = [
∂Az
∂y
− ∂Ay

∂z
,
∂Ax
∂z
− ∂Az

∂x
,
∂Ay
∂x
− ∂Ax

∂y
] = [0, 0, B0] = B .

c) From the formula for the Lagrangian given, we find for V (r) = 0:

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+ qyE0 +

1

2
q(−ẋ y + ẏ x)B0 .

The equations of motion are then:

d

dt

∂L

∂ẋ
= mẍ− 1

2
qẏB0 =

∂L

∂x
=

1

2
qẏB0 =⇒ mẍ = qẏB0 = Fx ,

d

dt

∂L

∂ẏ
= mÿ +

1

2
qẋB0 =

∂L

∂y
= qE0 −

1

2
qẏB0 =⇒ mÿ = qE0 − qẋB0 = Fy ,

d

dt

∂L

∂ż
= mz̈ =

∂L

∂z
= 0 =⇒ mz̈ = 0 = Fz ,

L does not depend on z, so z is cyclical and pz = ∂L/∂ż = mż is conserved. In addition, L does not

depend on time, so the energy, E = H is conserved. [Formula is not required.]
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d) Differentiating the equation of motion for y and using the one for x, we find, writing vy = ẏ:

mv̈y = −qẍB0 = −q
2B2

0

m
vy =⇒ v̈y + ω2vy = 0 .

where the cyclotron frequency is ω = qB0/m. This is a harmonic equation with solution:

vy = ẏ = V cos(ωt− δ) =⇒ y =

∫
ẏ dt =

V

ω
sin(ωt− δ) + y′0 .

where V, δ and y′0 are integration constants. We now can find x from:

ẋ = − m

qB0
ÿ = − ÿ

ω
= V sin(ωt− δ) =⇒ x =

∫
ẋdt = −V

ω
cos(ωt− δ) + x′0 .

where x′0 is another integration constant. From the initial conditions we find:

ẋ(0) = V sin δ = 0 , ẏ(0) = V cos δ = v0 =⇒ δ = 0, V = v0 .

Then with x(0) = x0 = x′0 − v0/ω or x′0 = v0/ω+ x0 and y(0) = y′0 = y0, all boundary conditions are

satisfied. The equation of motion in the z direction is z̈ = 0 with solution z = w0t satisfying z(0) = 0.

Thus the complete solution is:

r(t) =
[
−v0

ω
cosωt+ x′0,

v0

ω
sinωt+ y0, w0t

]
.

We see that the projection of the motion in xy-plane is circular, satisfying (x− x′0)
2

+ (y − y0)
2

=

(v0/ω)
2
. Thus the overall motion is a spiral winding around a line parallel to the magnetic field

through the point [x′0, y
′
0, 0] = [x0 + v0/ω, y0, 0]. The total velocity,

√
v2

0 + w2
0, and hence the kinetic

energy, is conserved, consistent with the fact that the magnetic field does no work.

e) Using the strategy and notation of the previous part, the equation for vy is unchanged, so the solution

is still:

vy = ẏ = V cos(ωt− δ) =⇒ y =
V

ω
sin(ωt− δ) + y′0 ,

with ω as before. The equation for ẋ is modified to:

ẋ = − 1

ω
ÿ +

E0

B0
= V sin(ωt− δ) +

E0

B0
=⇒ x = −V

ω
cos(ωt− δ) +

E0

B0
t+ x′0 .

The initial conditions become:

ẋ(0) = −V sin δ +
E0

B0
= 0 , ẏ(0) = V cos δ = v0 =⇒

V sin δ =
E0

B0
, V cos δ = v0 ⇐⇒ V =

√
v2

0 +

(
E0

B0

)2

, δ = arctan

(
E0

v0B0

)
.

x(0) and y(0),and hence x′0 and y′0, are unchanged from part e. The equation of motion for z is

unchanged, but now w0 = 0, so z(t) = 0. We see that the motion in the xy-plane is almost the

same as before, except that the center of the circle moves in the x direction with constant speed,

vt = E0/B0. If E0 = 0, we recover the solution in the previous part.

f) In the relativistic case the expression for the Lorentz force is unchanged, but we must write the

equations of motion in terms of the relativistic momentum, p:

dp

dt
= F = q(E + ṙ×B) .

The components of the relativistic momentum are:

pi = γmẋi , γ =
1√

1− ẋ2+ẏ2+ż2

c2

,

where m is the rest mass. The proof that the magnetic field does no work remains valid. Thus, in

the absence of an electric field the kinetic energy, and hence γ, is conserved. This means that we can

solve for the motion exactly as in part above in the case E0 = 0. The only difference is that m→ γm,

so the cyclotron frequency now depends on the velocity, ω = qB0/γm. But if E0 6= 0, even in the

non-relativistic case we have

ẋ2 + ẏ2 = V 2 + 2
E0

B0
V sin(ωt− δ) +

(
E0

V0

)2

,

so γ is not even constant in the non-relativistic limit, and we must look for another method of solution.

3


