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Problem 1

a) In Cartesian coordinates we have:

L = T − V =
1

2
mṙ2 −

1

2
kr2 =

1

2
m(ẋ2 + ẏ2 + ż2)−

1

2
k(x2 + y2 + z2)

Since the potential is central, V (r) = V (r), with r =
√
x2 + y2 + z2, we find the force, using ∂r/∂xi =

xi/r = r̂i:

F = −
∂V

∂r
= −

dV

dr

[
∂r

∂x
,
∂r

∂y
,
∂r

∂z

]
= −

dV

dr
r̂ = −

1

r

dV

dr
r .

We then find from the equation of motion for angular momentum that L is conserved (N is the

torque):

L̇ = N = r× F = −
1

r

dV

dr
r× r = 0 .

Since L = mr× ṙ is conserved and perpendicular to r and ṙ, which are both in the plane of motion,

this plane is fixed, and can be chosen as the xy-plane.

b) The initial conditions imply that the motion is constrained to the xy-plane. We thus have z = 0 and

pz = mż = 0 at all times. The remaining equations of motions are:

d

dt

∂L

∂ẋ
=
∂L

∂x
=⇒ mẍ = −

∂V

∂x
= −kx ,

d

dt

∂L

∂ẏ
=
∂L

∂y
=⇒ mÿ = −

∂V

∂y
= −ky .

This is a pair of harmonic equations, with solutions (ω =
√
k/m):

x(t) = A cosωt+B sinωt , y(t) = C cosωt+D sinωt .

The initial condition x(0) = x0 yields A = x0, ẋ(0) = Bω = 0 yields B = 0, y(0) = 0 yields C = 0

and ẏ(0) = Dω = v0 yields D = y0 = v0/ω. Hence the solution is:

x(t) = x0 cosωt , y(t) = y0 sinωt ,
x2

x02
+

y2

y02
= 1 ,

which is the equation of an ellipse with axes along the coordinate axes. Thus we have closed periodic

orbits, with period τ = 2π/ω.

c) With px = ∂L/∂ẋ = mẋ ands similarly py = mẏ we have the Hamiltonian as:

H = pxẋ+ py ẏ + pxż − L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+

1

2
k(x2 + y2 + z2) .

Since L is independent of time, H = E is the conserved energy.

d) We have, retaining the z dependence:

r = [r cosφ, r sinφ, z] ,

with r =
√
x2 + y2. We then find:

ṙ = ṙ [cosφ, sinφ, 0] + rφ̇ [− sinφ, cosφ, 0] + ż [0, 0, 1] = ṙ er + rφ̇ eφ + ż k .

We easily check that {er, eφ,k} form an orthonormal set of vectors, so:

ṙ2 = ṙ2 + r2φ̇2 + ż2 .
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e) We have:

L =
1

2
m
(
ṙ2 + r2φ̇2 + ż2

)
−

1

2
k(r2 + z2) .

Thus L does not depend on φ, which is thus a cyclical variable, and the conjugate momentum:

pφ =
∂L

∂φ̇
= mr2φ̇ = Lz = ` ,

is conserved. The equations of motions are:

d

dt

∂L

∂ṙ
=
∂L

∂r
=⇒ mr̈ = mrφ̇2 −

∂V

∂r
= mrφ̇2 − kr

d

dt

∂L

∂φ̇
=
∂L

∂φ
=⇒ m ˙̀ = 0, ,

d

dt

∂L

∂ż
=
∂L

∂z
=⇒ mz̈ = −

∂V

∂z
− kz .

The value of ` is:

` = mr2φ̇
∣∣
t=0

= mx0v0 = mx0y0ω .

f) The magnetic vector potential A by definition satisfies B =∇×A. To check that the given formula,

we use the formula at the end of the problem sheet, together with ∇ · B = ∂B/∂z = 0, ∇ · r =

∂x/∂x+∂y/∂y+∂z/∂z = 3, (r·∇)B = (x ∂B/∂x+y ∂B/∂y+z ∂B/∂z)k = 0 and (B·∇)r = B ∂r/∂z

= Bk=B:

∇×A =∇×
1

2
(B× r) =

1

2
[B(∇ · r)− r(∇ ·B) + (r ·∇)B− (B ·∇)r] =

1

2
[3B− 0 + 0−B] = B .

Furthermore, using the properties of the triple product we find:

ṙ · a =
1

2
ṙ · (B× r) =

1

2
B · (r× ṙ) =

1

2m
B · L

where L = r× ṙ is the mechanical angular momentum. If the initial conditions are unchanged, ż = 0

and z = 0, the motion will still be in the xy-plane, perpendicular to B, since the Lorentz force,

F = qṙ × B, has no component out of that plane. Then B and L are parallel, and we can drop all

z-dependence. With ` = |L|k we have:

ṙ · a =
1

2m
B · L =

B`

2m
=

1

2
Br2φ̇ .

Hence the Lagrangian is:

L =
1

2
m
(
ṙ2 + r2φ̇2

)
−

1

2
kr2 +

1

2
qBr2φ̇ .

g) φ remains a cyclical variable, so the canonical angular momentum, pφ, is still conserved. It is given

by:

pφ =
∂L

∂φ̇
= mr2φ̇+

1

2
qBr2 = `+

1

2
qBr2 .

h) Using ψ = φ+ ω0t as a new generalized coordinate, we have ψ̇ = φ̇− ω0, so:

L =
1

2
m
[
ṙ2 + r2(ψ̇2 − 2ω0ψ̇ + ω0

2)
]
−

1

2
kr2 +

1

2
qBr2(ψ̇ − ω0)

=
1

2
m
(
ṙ2 + r2ψ̇2

)
+

1

2
(qB − 2mω0)r

2ψ̇ −
1

2
(k + qBω0 −mw0

2)r2 .

We see that if we set:

ω0 =
qB

2m
k′ = k + qBω0 −mω

2
0 = k +

q2B2

4m
,

the Lagrangian expressed in terms of ψ has the same form as it had in the absence of a magnetic field

if expressed in terms of φ, but with a changed value for the constant of elasticity, k → k′:

L =
1

2
m
(
ṙ2 + r2ψ̇2

)
−

1

2
k′r2 .

The boundary conditions for ψ are ψ(0) = φ(0) = 0 and ψ̇(0) = v0/x0 + ω0. The motion in ψ will

still be ellipses, with a slightly shortened period τ ′ = 2π/ω′ = 2π
√

m
k′

, since k′ > k. But now these

ellipses themselves rotate (or precess) with angular frequency ω0, called the Larmor frequency.
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Problem 2

a) Choosing coordinates such that the cylinder axis is the z-axis, and letting ` be the length of the

cylinder and ρ the density, so that m = π`a2ρ, we find with r =
√
x2 + y2:

I = Izz =

∫∫∫
ρ(x2 + y2) dm = ρ

∫ `

0

dz

∫ a

0

r2 2πr dr = 2π`
1

4
a4 =

1

2
ma2 .

b) The rolling condition is that the line of contact between the cylinder and the surface is at rest at all

times. Since a point on the cylinder surface moves with a velocity v = aω relative to the axis, this is

the rolling condition, with v as the velocity of the axis, and in particular of the center of mass. By

Chasles’s (or Euler’s) theorem, the kinetic energy is:

T =
1

2
mv2 +

1

2
Iω2 =

1

2

[
ma2ω2 +

1

2
ma2ω2

]
=

3

4
ma2ω2 =

3

4
mv2 .

If the length of the incline is x0, the height of the line of contact above the horizontal base of the

wedge is zw = (x0−x) sinα (see figure). The vertical distance from the line of contact to the cylinder

axis is zc = a cosα, so the potential energy is:

V = mgz = mg(zw + zc) = mg [(x0 − x) sinα+ a cosα] = −mgx sinα+ V0 ,

where V0 is an irrelevant constant. Hence the Lagrangian is (aω = v = ẋ):

L = T − V =
3

4
mẋ2 +mgx sinα− V0 .

c) The Euler-Lagrange equation yields:

d

dt

∂L

∂ẋ
=
∂L

∂x
=⇒

3

2
mẍ = mg sinα ⇐⇒ ẍ =

2

3
g sinα .

d) The kinetic energy of the wedge is Tw = 1
2Mṡ, while its potential energy is constant, and can be

neglected. The height of the center of mass of the cylinder above the contact point with the wedge

is also unchanged, so the potential energy of the cylinder is mgx sinα plus some constant. But the

velocity of the contact point, x = [x, 0, 0] in the coordinate system with x-axis along the wedge, is

v = ṡ+ ẋ in the inertial system of the plane surface. Hence:

v2 = v2 = (ṡ+ ẋ)
2

= ṡ2 + ẋ2 + 2ṡẋ cosα .

Using I from part a above and the rolling condition ẋ = ωa, the Lagrangian can be written:

L′ =
1

2
Mṡ2 +

1

2
mv2 +

1

2
Iω2 +mgx sinα− V0

=
1

2
(M +m)ṡ2 +mṡẋ cosα+

3

4
mẋ2 +mgx sinα− V0 .

This yields the equations of motion:

d

dt

∂L′

∂ṡ
=
∂L′

∂s
=⇒

dps
dt

= (M +m)s̈+mẍ cosα = 0

d

dt

∂L′

∂ẋ
=
∂L′

∂x
=⇒

3

2
mẍ+m cosα s̈ = mg sinα ,

where ps = ∂L′/∂ṡ = (M +m)ṡ+mẋ cosα is the conserved canonical momentum conjugate to s.
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e) Inserting for s̈ from the equation of motion for s in that for x yields:

3

2
mẍ+m cosα s̈ =

3

2
mẍ−

m2 cos2 α

M +m
ẍ =

[
3

2
−
m cos2 α

M +m

]
mẍ = mg sinα .

ax = ẍ =
g sinα

3
2 −

m cos2 α
M+m

.

Thus the acceleration of the cylinder down the wedge, ax, is constant. We see that for an infinitely

heavy wedge, M →∞, so the result from part c above is recovered. Using the boundary conditions,

x(0) = 0, ẋ(0) = 0, we find x(t) = 1
2axt

2. The time to travel a distance D is thus given by D = 1
2axt

2
D,

or:

tD =

√
2D

ax
=

√
3D

g sinα

(
1−

2

3

m cos2 α

M +m

)
.

With the boundary condition ṡ(0) = 0, we find ps = 0, so with s(0) = s0 we have:

s(t) = s0 −
m cosα

M +m
x(t) =⇒ s(tD)− s0 = −

m cosα

M +m
D .

The wedge moves in the opposite direction of the cylinder, a consequence of -momentum conservation

for the combination of wedge and cylinder.
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