
FACULTY OF SCIENCE AND TECHNOLOGY

COURSE: FYS500 — Classical Mechanics and Field Theory
DURATION: 09.00 – 13.00 (4 hours).
DATE: 25/11 2015
RESOURCES: Approved pocket calculator
SET: 2 problems on 2 pages

Each part of a problem counts equally, and most of them can be solved at least partly
independently of the other parts. The candidate is referred to the formulas at
the end!

Problem 1:

A mass M is fixed at one end of a massless rod of length D in the gravitational field. The
other end is fixed so that the rod can move freely in all directions. Choose coordinates
such that the fixed end of the rod is at the origin and the gravitational acceleration, g,
is in the negative z-direction.

a) Show that in standard spherical polar coordinates r, φ, z, the velocity of the mass
satisfies.

ṙ2 = D2(θ̇2 + sin2 θ φ̇2) .

b) Using the angle ψ = π−θ between the negative z-axis and the rod an φ as generalized
coordinates, write down expressions for the kinetic energy, T , the potential energy
V and the Lagrangian, L. Also write down the energy, E, of the mass. Why is it
conserved?

c) Use the Lagrangian to find the equations of motions. Show that there is one cyclic
coordinate, and find the corresponding conjugate momentum, which we shall call `.
What is the physical interpretation of `?

d) Show that the equations of motion have an equilibrium solution with constant ω = φ̇
and equilibrium angle ψ = ψ0. Find the tension in the rod, τ , in this equilibrium.

e) Find the moment of inertia, I, of a homogeneous sphere about a diameter through
the center. The radius is a, the mass M .

f) Show that if the mass at the end of the rod is a homogeneous sphere of radius a,
the expression for the kinetic energy T remains valid provided one replaces D2 by
D′2 = D2+ 2

5a2, while V is unchanged. What theorem is your argument based upon?
[If you have not found I in the previous part, assume I = ca2 for some constant c.]

g) Find the equilibrium configuration for constant ω in the case of a finite a. and show
that this equilibrium is stable. Find the period of small oscillation about equilibrium
for the same initial value of `.
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Problem 2:

a) Write down the Lorentz force law for a particle of charge q that moves in both an
electric and a magnetic field, and show that the magnetic field does no work on the
particle.

b) Write down Newtons’s equations for the particle if the electric and magnetic fields
are parallel, and oriented along the z-axis: E = E0 k and B = B0 k. Introducing the
(mechanical) momentum vector p, show that the equations can be written:

ṗx =
qB0

m
py , ṗy = −qB0

m
px , ṗz = qE0 ,

c) We observe that the equations of motion splits in two independent sets, one for x(t)
and y(t) and one for z(t). Solve the equation for the motion in the z-direction for a
particle that starts from rest at z = 0 when t = 0.

d) Solve the equations of motion for x(t) and y(t) for a particle that starts at t = 0
from the point [x0, 0, 0] with the velocity [0, v0, 0]. Describe the motion and check
your solution by showing that the total kinetic energy is independent of B0 for all
times.

e) Write down the equations of motion for a relativistic particle moving in the same
electromagnetic field in terms of the relativistic momentum in a form similar to that
given in part b above. Why do these equations no longer split into two independent
sets?

f) Solve the relativistic equations of motion for the case B0 = 0, if the particle starts
from rest at the origin. Check that your solution is physically acceptable at large t.

Some formulas that may prove useful:

For small χ we have the approximations:

sin(ψ + χ) ≈ sinψ + χ cosψ , cos(ψχ) ≈ cosψ − χ sinψ .

and for any number a:
(1 + χ)

a ≈ 1 + aχ

An integral that may prove useful:∫
t√

1 + a2t2
dt =

1

a2

√
1 + a2t2 .
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