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Each part of a problem counts equally, and most of them can be solved independently
of the other parts.

Problem 1:

Two particles of masses m1 and m2 with coordinate vectors r1 and r2 interact with
each other through a central potential V (|r2 − r1|).

a) Write down the Lagrangian of the system, and use it to find the canonical momenta
conjugate to r1 and r2, and the Hamiltonian.

b) Introduce the center of mass coordinate R and the relative coordinate r = r2 −
r1, express the Lagrangian in these coordinates and find the conjugate canonical
momenta.

c) What are the conserved quantities of the system? Why is the relative motion neces-
sarily in a fixed plane?

We now introduce spherical polar coordinates, r, θ, φ, for the relative motion and spe-
cialize to the case of a gravitational potential, V (r) = −Gm1m2/r. We take the plane
of the motion to be the xy-plane (θ = π/2) and consider the motion in the center of
mass system, R = 0. The Lagrangian for the relative motion then takes the form:

L =
1

2
µṙ2 +

`2

2µr2
− V (r) ,

where ` = µr2φ̇ is the angular momentum and µ is the reduced mass of the two particles
(this need not be shown).

d) Find the effective potential, V`(r), for fixed `, and make a qualitative sketch of it.
Show the possible range of radial motion for typical values of the energy, E. Mark
in particular the turning point(s) of the orbit, and the radius of a circular orbit.

e) Derive Kepler’s third law, T 2 = ka3, in the case of a circular orbit of radius r = a.
Express the constant k in terms of G,m1 and m2.

f) Find the equation of motion for r(t) in the general case, and show that it leads to
the equation for the orbit:

d2u

dφ2
+ u = K .

where u = 1/r for a constant K which shall be determined. [Hint: From the expres-
sion for ` we have:

d

dt
=

`

µr2
d

dφ
=
`u2

µ

d

dφ
.
]
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g) Show, e.g. by direct substitution, that the orbit equation has a solution which leads
to the following expression for r:

r(φ) =
1

u(φ)
=

1

K

1

1 + e cos(φ− φ0)
,

where e and φ0 are constants of integration. Determine φ0 so that the (inner) turning
point is at φ = 0, and determine the radial distance(s) of the turning point(s) in
terms of K and e.

h) Show that the eccentricity can be expressed as:

e =

√
1 +

2El2

µ(Gm1m2)
2 .

i) The two particles approach each other from infinity with asymptotic relative velocity
v0 and impact parameter s. Find the scattering angle in the center of mass, Θ,
expressed in terms of v0, s, m1 and m2.

Problem 2:

A cylinder of mass M and radius R of an arbitrary cylindrical symmetric internal mass
distribution has a moment of inertia about its axis which can be written:

I = cMR2 ,

where c is a constant that depends on the mass distribution.

a) Show that c = 1 for a hollow cylinder, with all its mass in the cylinder wall, and
c = 1/2 for a cylinder of uniform density.

b) A cylinder rolls with angular frequency ω without slipping on a plane surface, The
center of mass velocity is v. What is the rolling-condition? Also find the total kinetic
energy and the Lagrangian for a cylinder with arbitrary c rolling down an inclined
plane. The plane makes an angle θ with the horizontal (see figure below). Use the
distance x along the plane as generalized coordinate.

θ

x

h

R
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c) Find the acceleration of each cylinder introduced in a) when rolling down the incline,
without slipping.

We have to parallel cylinders with the same mass, M , and radius, R. One has uniform
density, the other is hollow. The cylinders are connected by a massless rigid rod of
length Λ, perpendicular to the two axes, in such a manner that they can rotate freely
about their axes. The cylinders are placed on the incline so that they can roll straight
down it, with the hollow one lowest down.

d) Set up the Lagrangian for the two connected cylinders, and find the acceleration
of the system as it rolls down the incline, without slipping. [If you did not answer
b), assume that the solution of that problem is that the Lagrangian can be written
L = Acẋ

2 + Bx for some constants Ac and B, which depends on the parameters of
the problem.]

e) Find the tension in the connecting rod and the frictional forces acting at the two
contact points between the cylinders and the incline as they roll down.
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