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Each part of a problem counts equally, and most of them can be solved independently
of the other parts. The candidate is referred to the formula at the end!

Problem 1:

Two particles with masses m1 and m2 have coordinates r1 and r2, respectively.

a) Introduce the center of mass coordinate, R and relative coordinate r, and express
r1 and r2 in terms of R and r. Also write down the kinetic energy, T , of the two
particles in terms of these variables.

b) We introduce spherical polar coordinates for r: r = r[sin θ cosφ, sin θ sinφ, cos θ].
Show that the relative velocity satisfies:

ṙ2 = ṙ2 + r2(θ̇2 + sin2 θ φ̇2) .

c) The two particles are connected by a massless rigid rod of length a and are placed
in the constant gravitational field g = −gk. Write down the Lagrangian for the
system, and find all cyclical coordinates. Are there other, independent, conserved
quantities?

d) Derive the equations of motion for the system and describe qualitatively, with ex-
planation, the motion of the system if it is released with an initial center of mass
velocity V0 and relative angular momentum L.

We might alternatively wish to describe this system as a rigid body.

e) Show that the moment of inertia about an axis perpendicular to the rod can be
written:

I = µa2

where µ is the reduced mass of the system. Also explain why the moment of in-
ertia about the axis of the rod vanishes.Use this to write down the corresponding
Lagrangian, and show that it is the same as in c) above.

We use this system, with unchanged notation, to model of a satellite consisting of
two massive modules connected by a rigid, practically massless, beam. The satellite
is orbiting the Earth with the center of mass moving in a circular orbit of radius R.
Neglect centrifugal and Coriolis terms in the following [they are not important].

f) Show that the fact that the gravitational forces on the two modules point in slightly
different directions causes a torque on the satellite, which can be written (ri = |ri|,
M = m1 +m2 and G is Newton’s constant):

N = GµME
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where ME is the mass of the earth. By choosing the coordinate system such that φ
is the angle between R and r, one finds the excellent approximations:

r1,2 ≈ R
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(this needs not be shown). Use this to write the magnitude of the torque approxi-
mately as:

N = |N| ≈ 3

2
GµME
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R3
sinφ cosφ .

g) For which values of φ is the system in equilibrium? Investigate whether these equi-
libria are stable with respect to small perturbations. Also determine the angular
frequency of small oscillation around the stable one(s), and show that it does not de-
pend on a. What is the numerical value of the oscillation period close to the Earth’s
surface (R→ RE), using GME/R

2
E = g = 9.8 m/s2.

Problem 2:

In two space dimensions the potential energy both for electrostatics and Newtonian
gravity has the form V (r) = k ln(r/a), where k > 0 and a are constants.

a) Write the Lagrangian in polar coordinates r, θ for a particle moving in such a poten-
tial. Find the angular momentum, `, and the energy, E, and explain why both are
conserved.

b) Find the effective potential, V`(r), for fixed `, and make a qualitative sketch of it.
Show the possible range of radial motion for typical values of the energy, E. Mark in
particular the turning point(s) of the orbit, and the radius of a circular orbit. Does
one have solutions where the particle can escape to infinity?.

c) Find the radius of a circular orbit, r0, for fixed l, the corresponding angular velocity,
and the relation between r0 and the orbital period τ [analogous to Kepler’s third
law].

d) Obtain the equation of motion for r(t) in the general case. Use this to find the
equation of motion for a nearly circular orbit by writing r(t) = r0 +ρ(t) and making
an expansion of ∂V`

∂r (r0 + ρ) to linear order in ρ. Show that the resulting motion is
harmonic, and determine the angular frequency, ω.

e) Find θ(t) for a nearly circular orbit to lowest order in ρ. Also find how much the
angular coordinate of a turning point changes in one revolution. [This is called the
advance of the apsides]. If you have not found ω in the previous point, you can still
explain how to do this for an arbitrary ω.

A formula that may prove useful:

From the binomial theorem:
(1 + x)

a ≈ 1 + xa

when x� 1 for any a.
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