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Abstract

Faults propagating through the Earth generate a wave of deformation ahead of their tip lines. We have modeled this process to understand
the relationship between fold geometry and fault propagation. Using finite element modeling (FEM), we investigate the response of
incompressible frictionless and frictional materials, and a compressible frictional material with associated flow, to vertical and dipping
faults whose tip lines propagate at rates 3—3.5 times their slip rates. The fold geometries, finite strain, and velocity fields in models with
incompressible materials are very similar to those produced by the trishear kinematic model, even though the latter uses a purely ad hoc linear
velocity field. Furthermore, when the trishear grid search is applied to the final geometry of the mechanical folds, the best fit kinematic
models have approximately the same propagation-to-slip ratio as was used in the FEM experiments. However, when the compressible
frictional material is used, the mechanical models exhibit a main triangular shear band in front of the tip line and a conjugate shear band in the
fold backlimb, both migrating with the propagating tip line. The conjugate shear band, antithetic to the fault, produces a gentle anticlinal back

limb, even though there is not a bend in the fault. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As a fault propagates through the Earth, it produces a
suite of structures that include macroscopic folding as
well as secondary faults, fractures, minor folding, and pene-
trative strain. In addition to basic scientific interest, the fault
propagation folds and related deformation are important for
hydrocarbon exploration and the underlying blind thrusts
have considerable importance in earthquake-prone regions
as demonstrated by the unexpectedness of the 1994 North-
ridge event (Yeats and Huftile, 1995). Fault propagation and
‘forced’ folds have been modeled kinematically by assum-
ing steady velocity fields (Suppe and Medwedeff, 1990;
Erslev, 1991; Hardy and Ford, 1997; Zehnder and Allmen-
dinger, 2000), or mechanically by assuming simple rheolo-
gies and loading conditions (Braun and Sambridge, 1994;
Patton and Fletcher, 1995; Niifio et al., 1998; Johnson and
Johnson, 2001). The kinematic models relate fold geometry
to fault shape and displacement, and provide a systematic
framework to construct balanced cross-sections of the struc-
tures. Kinematic models, however, rely solely on idealized
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velocity distributions that may or may not have mechan-
ical validity. Mechanical models, on the other hand, do
not depend on an assumed velocity distribution. By
relating fold geometry to material behavior, the models
provide a physically feasible velocity distribution that
characterizes the folding process. Mechanical models,
however, rely on the idealistic knowledge of the rock
behavior and loading conditions during folding and do
not explicitly model fault tip propagation. Certainly, one
is compromised between the versatility of the kinematic
models and the physical soundness of the mechanical
models. Testing the validity of the velocity distributions
of the kinematic models with mechanical simulations,
might be a solution to this conundrum.

In this paper, we present 2D, large deformation, finite
element simulations of faults propagating in elastoplastic
frictionless and frictional materials. Our general objective
is to provide more realistic mechanical models by simulat-
ing the post yield behavior of the material and by explicitly
including fault tip propagation. Additionally, we wish to test
the mechanical soundness of the trishear kinematic model,
which is unique in also allowing fault tip propagation to be
specified (Erslev, 1991; Hardy and Ford, 1997; Allmendin-
ger, 1998). Trishear reproduces the geometry of folds
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Fig. 1. Geometry of the trishear model. Dashed horizontal lines indicate a faulted geologic marker. The slip on the fault is AB, and the fault propagates a
distance AC. The propagation to slip ratio (P/S) is AC/AB. Velocity vectors for the simplest formulation of the model, a symmetric (with respect to the fault)
triangular zone across which the component of the velocity parallel to the fault decreases linearly (Zehnder and Allmendinger, 2000).

observed in the field, predicts the finite strain distribution of
analog and field examples, and allows the estimation of fault
nucleation sites (Allmendinger, 1998; Allmendinger and
Shaw, 2000). Trishear kinematics, however, has no mechan-
ical basis.

Our numerical, mechanical experiments confirm the
soundness of the trishear kinematic model. Vertical and
inclined faults propagating in elastoplastic incompressible
materials generate fold geometries, strain fields, and velo-
city fields similar to those of the trishear model. In the
compressible frictional material, however, a conjugate
shear band commonly focuses on the backlimb of the struc-
ture; the hanging wall deforms, rotates towards the fold
backlimb, and uplifts. The extent and magnitude of plastic
deformation in this conjugate shear band increases with
material strain softening, and material dilation. Trishear
replicates the geometries and the finite strain fields of
folds formed in incompressible materials. Trishear,
however, cannot replicate the backlimb geometries and
finite strain fields of folds formed in the compressible mate-
rial. The assumption of rigid hanging wall translation of
trishear (and of all kinematic models) is not justified
under conditions favorable to material dilation and strain
softening.

2. The trishear kinematic model

Trishear (Erslev, 1991) is a kinematic model for fault
propagation folds, alternative to the better-known parallel
kink model (Suppe and Medwedeff, 1990). In trishear a
triangular zone of distributed shear expands ahead of the
propagating fault tip (Fig. 1). The hanging wall moves
rigidly parallel to the fault at a velocity equal to the incre-
mental slip (v,) on the fault, and the footwall is fixed (Fig.
1). The rock material inside the triangular zone moves
according to a velocity field that satisfies the velocity condi-
tions at the triangle boundaries and ensures preservation of
area during the deformation (Fig. 1; Hardy and Ford, 1997;
Zehnder and Allmendinger, 2000). The propagation of the
fault tip and the migration of the triangular zone through the
rock material are explicitly specified in the model by P/S,
the ratio of fault propagation to fault slip (Fig. 1).

Trishear deformation resembles both the geometry and
the finite strain field of fault propagation folds in thick and
thin skinned provinces (Erslev, 1991; Allmendinger 1998).
Trishear is therefore a powerful tool to construct balanced
cross-sections of fault propagation folds (Erslev, 1991;
Hardy and Ford, 1997; Allmendinger, 1998), predict the
distribution and orientation of fractures in the folds
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(Allmendinger, 1998), and estimate the nucleation point of
underlying blind thrusts (Allmendinger and Shaw, 2000).

The model, however, does not have a mechanical basis.
The assumed triangular zone of distributed shear ahead of
the fault tip has some analogy with the triangular zone of
high shear stress in front of a mode II crack (Pollard and
Segall, 1987), and the model’s strain rate resembles the
strain of a stationary crack in an elastic-perfectly plastic
material (both are infinite as the fault tip is approached;
Zehnder and Allmendinger, 2000; Rice, 1968). But even if
the trishear configuration is mechanically reasonable, the
assumed rigid behavior of the hanging wall, and the move-
ment of rock material inside the triangular zone (which
could be defined by an infinite number of potential velocity
fields; Zehnder and Allmendinger, 2000) have not been
mechanically tested. It is also not clear how the loading
conditions, material mechanical behavior, and material
anisotropy control the extent of the triangular zone (defined
by its apical angle) and the P/S. Intuitively, the P/S might be
controlled by rock competence or the surrounding effective
stress (low P/S in incompetent or/and overpressured rocks;
Allmendinger, 1998). Trishear fold geometries are more
sensitive to P/S variations than to changes in the apical
angle of the triangular zone (Allmendinger et al., 2002),
but the mechanical significance of P/S and the trishear
apical angle, of their magnitudes, and their relative changes
is unknown.

3. Mechanical modeling of fault propagation folds

A fault propagating through the Earth imparts an irrecov-
erable field of deformation to the rocks immediately ahead
of the fault tip (Elliott, 1976; Williams and Chapman,
1983). Fault propagation folding refers to this wave of finite
deformation (Suppe, 1985). This mechanical process of
simultaneous faulting and folding is characterized by three
interdependent parameters: the slip on the fault, the propa-
gation of the fault, and the internal strain of the rock mate-
rial ahead of the fault tip (Williams and Chapman, 1983).

Mechanical, analytical models of fault propagation folds
consider the internal deformation of the rock material in
response to a displacement or velocity boundary condition
that is equivalent to the slip on the fault. The models can be
divided into two main groups: block motion type models,
and dislocation type models. In block motion type models a
displacement or velocity boundary condition is applied at
the base of an incompressible, elastic (Sanford, 1959), or
viscous layer (Patton and Fletcher, 1995; Johnson and John-
son, 2001). Such models are appropriate for representing the
deformation of a sedimentary cover above rigid basement
blocks that move along a fault (forced-folds of Stearns,
1978). In viscous rheologies, the calculated velocity fields
produce geometries that resemble folds in the field and in
analog experiments (Patton and Fletcher, 1995; Johnson and
Johnson, 2001). Trishear-like folds form in isotropic, and

kink-like parallel folds in anisotropic viscous materials
(Johnson and Johnson, 2001).

Dislocation type models are more appropriate for faults
that propagate through and deform rocks of similar mechan-
ical properties. In these models a displacement boundary
condition equivalent to the fault slip is applied to a crack
or a fault inside a homogenous elastic media. The crack is
then sealed and the residual elastic stresses and strains
resulting from slippage of the fault are -calculated
(Manshinha and Smylie, 1971; Johnson, 2001). The
computed displacement fields are similar to the ground
displacements observed after earthquakes (Savage and
Hastie, 1969; Chen et al., 1978), and to some extent, to
the displacement fields (properly scaled) of natural and
analog fault propagation folds (Rodgers and Rizer, 1981).
In fact, it has been suggested that fault propagation folds
result from the sum of dislocation type, elastic strain incre-
ments associated with earthquakes (King et al., 1988).
However, the link between coseismic deformation and the
finite strain of fault propagation folds remains enigmatic.

Although the analytical models solve for stress fields that
have not reached a yielding state, it is customary to deter-
mine the orientation of potential faults by fitting Coulomb
slip lines into the models’ principal stress trajectories
(Sanford, 1959; Rodgers and Rizer, 1981; Patton and
Fletcher, 1995). The similarity of such predicted fault
patterns with the orientation of secondary faulting in analog
and natural fault propagation folds seems to justify this
mechanically non-rational approach. Apparently, ahead of
the fault tip most of the stress reorientation occurs before
reaching the yielding state, and therefore the analytically
computed stress fields are close in orientation (but not in
magnitude) to the stress fields at the yielding state (Mandl,
1988). Analytical models, however, do not consider the
intrinsic effects of faulting; mainly deformation of the
rock as it moves along a frictional surface, and as the fault
propagates.

Mechanical, numerical models can represent more realis-
tically the process of fault propagation folding, albeit at the
loss of some insight due to their inherent complexities. Vari-
able material and environmental parameters, body forces,
and more realistic rheologies can be included in numerical
models. Finite difference and finite element methods allow
the introduction of plastic, and viscous—plastic rheologies
that resemble more closely the mechanical behavior of rock
materials (Braun and Sambridge, 1994; Gregg Erickson and
Jamison, 1995; Strayer and Hudleston, 1997; Niifio et al.,
1998; Smart et al., 1999). In contrast to the behavior of
viscous layers (Johnson and Fletcher, 1994), material defor-
mation in plastic rheologies is entirely dependent on the
applied loading but independent of the rate of change of
the load (Mandl, 1988). The absence of time in plastic
deformation might seem inappropriate to characterize rock
materials, but in the upper crust frictional regime where
most of the deformation is accommodated by slip along
fractures, it is justified (Mandl, 1988). Alternatively, one
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Fig. 2. Finite element meshes and boundary conditions of the numerical experiments. (a) Vertical fault. (b) Dipping fault. Heavy line indicates the initial fault
surface. Dashed line indicates the bonded contact surface, or trajectory of fault propagation, which is pulled apart during deformation according to a prescribed
rate of fault growth. In both experiments, the origin of coordinates is at the left corner of the finite element mesh (black dot).

can combine viscous behavior with plastic flow type models
to simulate time-dependent processes without frictional slip
(i.e. pressure solution creep) and time-independent fric-
tional slip processes (i.e. cataclasis; Gregg Erickson and
Jamison, 1995).

Numerical models of fault propagation folds have been
implemented to investigate the simultaneous development
of folding and faulting (Braun and Sambridge, 1994), the
internal deformation of the rock mass as it moves along the
fault (Strayer and Hudleston, 1997, their model B; Nifio et
al., 1998), the role of anisotropy and bed-parallel slip in the
potential propagation path of a thrust fault (Nifio et al.,
1998), and the effect of fault friction on the internal defor-
mation of the rock material (Smart et al., 1999). However,
none of these models considers explicitly the propagation of
the fault tip. In the Braun and Sambridge (1994) experiment,
the fault propagates dynamically in response to crustal
shortening, a basal velocity singularity, and the mechanical
response of the elastoplastic material. But the propagation
of the fault is denoted by a geometrical, not a mechanical
discontinuity. The continuity of the rock domain is
preserved throughout the experiment. In the Strayer and
Hudleston (1997) and Smart et al. (1999) experiments, the
fault surface (denoted by a sliding frictional surface) is
specified before deformation. In the Nifo et al. (1998)

experiment the fault tip remains stationary during deforma-
tion.

In this study we present numerical, mechanical experi-
ments that thoroughly simulate the dynamic interaction of
fault propagation, fault slip, and internal rock deformation.
In addition to the advantages of the current numerical
models for fault propagation folding, the experiments
include fault propagation explicitly by specifying a mechan-
ical discontinuity that grows during the deformation.

4. Numerical experiments

We implemented 2D, plane strain, large deformation
finite element analyses of faults propagating in plastic mate-
rials using ABAQUS/Standard 5.8™, a general purpose,
finite element code. This code provides well-documented
elasto—plastic material models that realistically simulate
rock behavior, efficiently solves nonlinear large deforma-
tion problems by incrementally applying the load, and expli-
citly introduces fault propagation based on a critical stress
or a time-dependent failure criterion.

4.1. Model configurations and boundary conditions

We performed crustal scale experiments with two



Table 1

Summary of finite element simulations. For all models: p o = 2500 kg/m3, E=30GPa, »=0.25

Model Material properties” Hardening® Fault dip & friction Imposed displacement (km) FW initial tip line® (km) HW initial tip line® (km) final tip line® (km) PIS
Vertical fault

Elastoplastic 200.0 0.00 90.0, 0.3 1.00 5.02,5.03 5.04, 5.95 5.10, 8.00 32
Drucker—Prager® 40.9, 30.0, 0.0 0.00 90.0, 0.2 1.00 5.03, 5.03 5.05, 5.96 5.09, 8.03 32
Drucker—Prager? 39.8, 28.8, 39.8 0.00 90.0, 0.3 1.00 5.02, 5.04 5.03, 5.96 5.05, 8.00 32
Dipping fault

Elastoplastic 200.0 0.00 45.0, 0.1 1.00 6.83, 9.81 7.76, 10.73 9.82, 12.72 32
Drucker—Prager® 40.9, 45.00, 0.0 0.00 35.0,0.3 1.00 6.85,7.74 7.74, 8.33 9.82,9.79 33
Drucker—Prager® 39.8,43.2,39.8 0.00 22.0,0.3 1.00 6.82,5.74 7.70, 6.16 9.68, 7.12 33
Varying hardening (compressible materials)

Drucker—Prager 39.8,43.2,39.8 —0.001 22.0,0.3 1.00 6.82,5.74 7.71, 6.16 9.66, 7.12 32
Drucker—Prager 39.8,43.2,39.8 0.001 22.0,0.3 1.00 6.82,5.74 7.70, 6.15 9.68, 7.12 33
Drucker—Prager 39.8,43.2,39.8 0.005 22.0,0.3 1.00 6.83,5.74 7.68, 6.13 9.70, 7.12 34
Drucker—Prager 39.8,43.2, 39.8 0.01 22.0,0.3 1.00 6.84, 5.74 7.66, 6.11 9.71, 7.11 35
Varying friction’ (compressible materials)

Drucker—Prager 23.9, 49.6, 23.9 0.00 30.0,0.3 1.00 6.83, 6.92 7.69, 7.43 9.69, 8.65 33
Drucker—Prager 30.2, 48.0, 30.2 0.00 27.0,0.3 1.00 6.83, 6.46 7.70, 6.93 9.68, 8.04 33
Drucker—Prager 39.8,43.2,39.8 0.00 22.0,0.3 1.00 6.82,5.74 7.70, 6.16 9.68, 7.12 33
Drucker—Prager 46.2,37.2,46.2 0.00 17.0,0.3 1.00 6.81, 5.08 7.70, 5.42 9.67, 6.27 33

* For elastoplastic oy,q (MPa). For Drucker—Prager 3, d (MPa), . Incompressible materials ¢ = 0. Compressible materials ¢ > 0.

® Hardening modulus as a fraction of Young’s modulus, E.
x and y coordinates. Origin of coordinates at left corner of finite element mesh. FW = footwall, HW = hanging wall.

c

¢ Corresponding Mohr—Coulomb friction angle and cohesion = 30°, 20 MPa.
S_ Corresponding Mohr—Coulomb friction angle and cohesion = 30°, 30 MPa.
T Corresponding Mohr—Coulomb friction angles = 15, 20, 30 and 40°. Corresponding cohesion = 30 MPa.

911 (£002) §T 807020 amponaig fo puinoy /v 12 020pavY ‘N



6 N. Cardozo et al. / Journal of Structural Geology 25 (2003) 1-18

a. Stress-strain

oA
Oyld
E
€
b.t-p diagram
th
Incompressible
flow hardening
~
associated -
dilatant flow _
7~
p

Fig. 3. Mechanical behavior of the materials used in the experiments. (a) Stress (o) vs. strain (€) behavior of elastoplastic (frictionless or frictional) materials,
with and without strain hardening. oyld: yield stress, E: Young’s modulus, Ehardening: hardening modulus. (b) Drucker—Prager failure model in a deviatoric
stress (¢) vs. mean normal stress (p) diagram. In compressible materials with an associated flow rule, the flow is perpendicular to the yield surface (y = B). In

incompressible materials ¢y = 0. See text for definition of additional symbols.

configurations: a vertical fault and a dipping fault (Fig. 2).
In both configurations four node quadrilateral elements are
used to discretize the rock domain, and infinite elements to
simulate the far field behavior at the unconstrained sides of
the domain. Meshes of 6400 elements with an element size
of 125 X 125 m, and 4000 elements with an element size of
200 X 100 m close to the fault surface are used in the verti-
cal and dipping fault experiments, respectively (Fig. 2).
Experiments with different mesh sizes and mesh geometries
yielded similar strain and velocity fields. Our observations
are scale and mesh geometry independent.

In the vertical fault experiment a vertical displacement
boundary condition is applied at the left base of the model,
and the right base is held fixed (Fig. 2a). This configuration
is similar to the geometry and the loading conditions of
basement-cored uplifts limited by high angle reverse faults
(Prucha et al., 1965; Stearns, 1971, 1978). In the dipping
fault experiment a horizontal displacement boundary condi-
tion is applied at the left side of the hanging wall, and the
left side of the footwall is held fixed (Fig. 2b). These loading

conditions are similar to those assumed in tectonic over-
thrusting (Hubbert, 1951; Elliott, 1976), and in crustal short-
ening models of basement-cored uplifts (Berg, 1962).

Gravity is imposed on all elements. The loading is
divided into an initial static step that brings the rock mass
to a lithostatic state of stress, and a second static step in
which the displacement boundary conditions are applied.
To simulate the fault (thick line; Fig. 2a and b), we used
contact surfaces with a basic Coulomb friction model where
sliding begins when the shear stress exceeds the product of
the coefficient of friction and the pressure normal to the
contact surfaces. To guarantee numerical convergence, we
adopted low coefficients of friction in all the simulations
(0.3-0.1; Table 1). These values are lower than those
reported in shear tests of small specimens (0.6—0.8; Byerlee,
1978) but are within the range suggested by studies on the
strength of large faults (Turcotte and Schubert, 1982; Bird
and Baumgardner, 1984).

Fault propagation is simulated with bonded (joined at
their nodes) contact surfaces ahead of the initial fault tip

Fig. 4. Contours of equivalent plastic strain superimposed on deformed configuration of initially horizontal markers for the vertical fault experiment with (a)
frictionless, (b) incompressible Drucker—Prager, and (c) compressible Drucker—Prager materials. Broken circles indicate the initial position of the tip line of
the fault (in the hanging wall and footwall). White circle indicates the final position of the tip line.
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(dashed line; Fig. 2a and b), that during the deformation
were torn apart (released at their nodes) according to a
specified history of fault growth. Therefore, the trajectory
and the rate of fault propagation are prescribed in the numer-
ical simulations. In the experiments the fault propagates
between 3.2 and 3.5 times the slip on the fault (P/
§=3.2-3.5; Table 1). These prescribed P/S ratios are
within the range of values found in real fault propagation
folds (Williams and Chapman, 1983; Hardy and Ford, 1997;
Allmendinger, 1998).

4.2. Material properties

The mechanical behavior of the materials used in the
experiments is characterized initially by an elastic response,
followed by non-recoverable plastic deformation when the
load exceeds some limit, ‘the yield stress’ (Fig. 3a). Since
yielding (onset of non-recoverable deformation) occurs at a
stress less than 1% the elastic modulus of the materials
(Table 1), most of the deformation is dominated by plastic
strains. We used materials with strain rate independent
yield, and either pressure stress independent yield (friction-
less), or pressure stress dependent yield (frictional). Fric-
tionless materials are a good first approximation of brittle
deformation in the upper crust (Desai and Siriwardane,
1984; Braun and Sambridge, 1994). Frictional materials,
however, are necessary to reproduce the observed increase
of yield stress with confining pressure in rocks (Jaeger and
Cook, 1979).

A Mises yield surface with associated flow (incompres-
sibility) was assumed for the frictionless materials. For the
frictional materials we used a linear Drucker—Prager model
(Fig. 3b) with a yield surface expressed by the equation
(Desai and Siriwardane, 1984):

t=ptanf +d (H

where p is the mean normal stress, 7 is a measure of the
deviatoric stress, and 3 and d are the Drucker—Prager
friction angle and cohesion, respectively. Analogous to
the more familiar Mohr—Coulomb model, the linear
Drucker—Prager model assumes a linear relation
between the yield stress and the confining pressure
(Fig. 3b). The main difference between these two fric-
tional material models is that Mohr—Coulomb assumes
that failure is independent of the value of the intermedi-
ate principal stress, while Drucker—Prager does not
(Mendelson, 1968; Desai and Siriwardane, 1984). Both
incompressible (dilation angle () =0; Fig. 3b) and
compressible materials with associated flow (Y= f3;
Fig. 3b) were considered in the frictional materials.
The second case, although not realistic (very brittle
rocks typically have dilation angles of one quarter of
their friction angles; Hoek, 2000), provided an end
scenario to evaluate the effects of dilation on folding.
Values of the constants required for the frictionless mate-
rial model (Table 1) were taken from the literature (Jaeger

and Cook, 1979; Ranalli, 1987). Values for the linear
Drucker—Prager material model (Table 1) were calculated
from well-documented Mohr—Coulomb  parameters
(Kulhawy, 1973; Jaeger and Cook, 1979; Carmichael,
1989) using the equations (Desai and Siriwardane, 1984,
their equations 10-8):

3sing d V3cosd
tanB = ———  and — = ———
A1+ %sinzcb ¢ 1+ %Sinqu )
for y=p
tanf3 = V3sing and g = Bcos¢ for Yy=0 3)

where ¢ and c are the corresponding Mohr—Coulomb fric-
tion angle and material cohesion. Eq. (2) is for compressible
materials with associated flow, and Eq. (3) is for incompres-
sible materials (non-associated flow). In the dipping fault
simulations, the dip of the fault is controlled by the frictional
properties of the material. In frictionless materials the fault
dips 45° (Table 1). In Drucker—Prager materials the dip of
the fault is function of the friction (8) and dilation (i)
angles (Table 1). In the experiments, the fault trajectory
bisects the generated zone of plastic strain ahead of the
fault tip, which has an orientation that is also intrinsically
related to the frictional properties of the material.

We studied the effects of material strain hardening or
softening (increase or decrease of strength with strain) and
material friction in Drucker—Prager compressible materials
(Table 1). Hardening is defined by the ratio between the
hardening modulus and the elastic modulus of the material
(Fig. 3a and b):

Hratio = Ehardening/E “4)

5. Results

In this section we present the results of our mechanical
simulations and compare them with the trishear kinematic
model. To model the mechanical folds with trishear, we grid
searched for the best inverse trishear models that restored
the folded markers of the mechanical experiments to their
original planar orientations (Allmendinger, 1998). We used
fixed values for the trishear parameters known in the experi-
ments—ramp angle and final tip line location—and grid
searched for P/S (from 2.5 to 3.5), trishear angle (from 5
to 60°), and fault slip (from O to 2 km). In all cases, the grid
search gave the correct P/S prescribed in the mechanical
experiments. We then ran forward these best trishear models
and compared their geometries, finite strain, and velocity
fields with those of the mechanical experiments.

5.1. Vertical fault models

Contour plots of equivalent plastic strain (Hill, 1950)
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Fig. 5. Velocity field (left side) and variation of velocities parallel and perpendicular to the fault (thick lines on right side) along a tie rod (heavy line in velocity
field), for the vertical fault experiment with (a) frictionless, (b) incompressible Drucker—Prager, and (c) compressible Drucker—Prager materials. Black dot in
velocity field indicates the final position of the tip line. In velocity variation plot the velocities are plotted as fractions of the maximum velocity parallel to the
fault (v/vinax). The origin of the horizontal coordinate is at the left end of the tie rod. Thinner lines denote the velocity profiles of the best-fit trishear model.

superimposed on the deformed geometry of initially hori-
zontal markers illustrate the finite strain field of the experi-
ments (Fig. 4). A vertical fault propagating in a frictionless
(Fig. 4a) or a frictional incompressible (Fig. 4b) material
generates a symmetric to slightly asymmetric (with respect
to the fault) zone of plastic deformation. The magnitude of
the equivalent plastic strain in this zone increases towards

the fault tip (Fig. 4a and b). The resultant folds have fore-
limbs that taper from steeper dip angles near the fault tip to
gentler dip angles at the surface (Fig. 4a and b). Fold tight-
ness and thinning of the marker horizons increases towards
the fault tip (Fig. 4a and b). The forelimb dips are steeper
and the fold width is less in the frictional incompressible
(Fig. 4b) than in the frictionless material (Fig. 4a). The final
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Fig. 6. Contours of equivalent plastic strain superimposed on deformed configuration of initially horizontal markers for the dipping fault experiment with (a)
frictionless, (b) incompressible Drucker—Prager, and (c) compressible Drucker—Prager materials.

fold geometries resemble the drape folds of the Rocky
Mountain foreland (Prucha et al., 1965; Stearns, 1971; Live-
sey, 1985, his seismic line B).

A vertical fault propagating in the frictional compressible
material produces a finite strain field that differs from the
above two cases (Fig. 4c). The fault generates a zone of
plastic strain in its footwall (Fig. 4c). This strain localization
is explained by the fact that under the applied displacement
boundary conditions the material in the footwall is in
tension. The yield stress, which is pressure dependent, is
much lower and therefore the material yields at these local-
ities. This produces material dilation and a decrease in the
confining pressure, which in turn promotes further yielding.
In a more realistic model in which the trajectory of fault
propagation was entirely controlled by the physics of the
material (and not prescribed before the experiment), there
would be steep reverse and upwards-convex faults emanat-
ing from the vertical fault towards the plastic strain zone.
These faults have been documented in sandbox experiments
(Mandl, 1988, his figures 1.2-71 and I1.7-33), and in base-

ment uplift structures of the Wyoming foreland (upthrust of
Prucha et al., 1965).

Velocity fields calculated by subtracting the displace-
ments at the end and at 99% the total time of the experi-
ments illustrate the kinematics of the deformation (left side;
Fig. 5). In the simulations, the velocity vectors are sub-
parallel to the fault in the hanging wall and decrease in
magnitude and vary in direction across a triangular zone
(with apex at the fault tip) symmetric (left side; Fig. 5a
and b) or asymmetric (left side; Fig. 5¢) to the fault. Profiles
of the velocities parallel and perpendicular to the fault (thick
lines on right side; Fig. 5) along a tie rod perpendicular to
the fault, and 1000 m ahead of the fault tip (heavy line on
left side; Fig. 5) depict the variation of velocity across this
zone. In frictionless and frictional incompressible materials
the velocity parallel to the fault decreases almost linearly
(thick continuous line on right side; Fig. 5a and b). The
velocity perpendicular to the fault has a parabolic variation,
with a maximum at the bisector of the triangular zone (thick
dashed line on right side; Fig. 5a and b). These velocity
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Fig. 7. Velocity field (left side) and variation of velocities parallel and perpendicular to the fault (thick lines on right side) along a tie rod (heavy line in velocity
field), for the dipping fault experiment with (a) frictionless, (b) incompressible Drucker—Prager, and (c) compressible Drucker—Prager materials. Black dot in
velocity field indicates the final position of the tip line. Thinner lines in velocity profiles denote the velocity variation of the best-fit trishear model.

profiles are strikingly similar to those of a symmetric, linear
trishear zone (Hardy and Ford, 1997; Zehnder and Allmen-
dinger, 2000). In fact, the velocity profiles of the best-fit
trishear models (thin lines on right side; Fig. 5a and b) for
the fold geometries of the experiments (Fig. 4a and b); are
close to the velocity profiles of the mechanical experiments

(thick lines on right side; Fig. 5a and b). However, there is a
subtle difference with respect to the trishear model. The
velocity perpendicular to the fault in the hanging wall mate-
rial outside the triangular zone is non-zero (thick dashed line
from O to 2 km on right side; Fig. 5a and b). Contrary to
trishear (and to all kinematic models), the hanging wall does
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Fig. 8. Evolution of the dipping fault experiment in (a) and (c) frictionless or (b) and (d) compressible Drucker—Prager materials. In (a) and (b) the experiment
evolution is depicted by contours of maximum principal strain rate superimposed on the deformed marker configuration at 50, 75 and 100% the total time of
the experiment. In (c) and (d) the evolution is displayed by profiles of the velocities parallel and perpendicular to the fault along a tie rod perpendicular to the
fault and 2000 m in front of the fault tip at times 50, 75, and 100% the total time of the experiment.

not move rigidly parallel to the fault, but deforms internally much broader zone, asymmetric with respect to the fault and
and moves oblique to the fault before entering the triangular entirely localized in the footwall (right side; Fig. 5c).

zone of velocity variation. In the frictional compressible

material the velocity profiles (right side; Fig. 5c) are some- 5.2. Dipping fault models

what similar to those of incompressible materials (right side;
Fig. 5a and b). Nonetheless, the velocity vectors vary over a A dipping fault propagating in a frictionless (Fig. 6a),
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Fig. 9. Effects of material hardening on the fold geometry and the equivalent plastic strain generated by a dipping fault propagating in the compressible
Drucker—Prager material. Strain hardening is specified by a hardening modulus of (a) —0.001 (strain softening), (b) 0.001, (c) 0.005, and (d) 0.01 the Young’s

modulus of the material.

frictional incompressible (Fig. 6b), or the frictional
compressible (Fig. 6¢) material, generates a symmetric
(with respect to the fault) zone of plastic strain. The equiva-
lent plastic strain in this zone increases towards the fault tip
(Fig. 6). The resultant folds decrease in amplitude and
increase in width away from the fault tip. The forelimbs
taper from steep dips near the fault tip to more gentle dips
at the surface (Fig. 6). However, there is an essential differ-
ence between folds formed in incompressible (Fig. 6a and b)
and folds formed in the compressible material (Fig. 6¢). In
the compressible material, there is a conjugate band of plas-
tic strain, and a gentle anticlinal backlimb (Fig. 6¢). Such
anticlinal backlimb has been observed in clay models
(Groshong’s model in Rodgers and Rizer, 1981), sandbox
experiments (Mandl, 1988, his figure II.7-14), viscous

models (isotropic cover welded to the basement case of
Johnson and Johnson, 2001), and particulate flow models
(Finch et al., 2002).

Velocity fields derived by subtracting the displacements
at the end and at 99% the total time of the experiments
illustrate the kinematics of folding (left side; Fig. 7). In
incompressible materials (left side; Fig. 7a and b) the velo-
city vectors are sub-parallel to the fault in the hanging wall,
and decrease in magnitude but slightly in direction across a
narrow triangular zone (with apex at the fault tip) symmetric
to the fault. In the compressible material (left side; Fig. 7¢)
the velocity vectors rotate progressively upwards in the
hanging wall, and change in magnitude but little in direction
across a triangular zone ahead of the fault tip. Profiles of the
velocities parallel and perpendicular to the fault (thick lines
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Fig. 10. Effects of material friction and dilation on the fold geometry and the equivalent plastic strain generated by a dipping fault propagating in the
compressible Drucker—Prager material. Material friction and dilation angles are (a) 24, (b) 30, (c) 40, and (d) 46°. The corresponding Mohr—Coulomb friction

angles are 15, 20, 30 and 40°, respectively.

on right side; Fig. 7) along a tie rod perpendicular to the
fault and 2000 m ahead of the fault tip (heavy line on left
side; Fig. 7) emphasize these observations. In incompressi-
ble materials, the velocity parallel to the fault decreases
almost linearly across the triangular zone (thick continuous
line on right side; Fig. 7a and b), while the velocity perpen-
dicular to the fault slightly varies (thick dashed line on right
side; Fig. 7a and b). These velocity profiles (thick lines on
right side; Fig. 7a and b) are similar to those of the best-fit
trishear models (thin lines on right side; Fig. 7a and b) for
the fold geometries of the experiments (Fig. 6a and b). Like
the mechanical experiments, the velocity parallel to the fault
decreases linearly and the velocity perpendicular to the fault
changes little across the triangular zone in the best-fit
trishear models (thin lines; Fig. 7a and b). However, in
the mechanical experiments the hanging wall also deforms

internally and moves slightly oblique to the fault (thick
dashed line between 0 and 2 km, right side; Fig. 7a and b).

The velocity profiles of the compressible material (thick
lines on right side; Fig. 7¢) differ considerably from those of
the best-fit trishear model (thin lines on right side; Fig. 7c)
for the final geometry of the simulation (Fig. 6¢). In the
hanging wall, the velocity perpendicular to the fault (thick
dashed line on right side; Fig. 7c) is almost 60% the velocity
parallel to the fault (thick continuous line on right side; Fig.
7¢). In front of the fault tip the velocities parallel and
perpendicular to the fault decrease linearly (thick lines on
right side; Fig. 7c), resulting in velocity vectors that change
little in orientation (left side; Fig. 7c). The assumption of
trishear (and of all kinematic models) of a rigid hanging
wall moving parallel to the fault is obviously not justified
in this simulation.
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Fig. 11. Trishear modeling of the vertical (a and b) and dipping fault (c and d) experiments in incompressible frictionless materials. (a) and (c) Best fitting
trishear models (dashed lines) superimposed on the final bed geometries of the mechanical simulations (continuous lines). (b) and (d) Strain ellipses and
maximum principal strain axes of the best trishear models (dashed) superimposed on maximum principal strain axes of the mechanical simulations (thick
lines). Note close coincidence in the orientation and the magnitude (i.e. length) of the axes of maximum principal strain. Stretch in the trishear model is
averaged over the size of an initially unit diameter circle. Stretch in the mechanical model is a point wise value calculated at the center of the trishear ellipsoids.

5.3. Evolution of deformation

Contours of maximum principal strain rate superimposed
on the deformed marker configuration at times 50, 75 and
100% the total time of the experiment, illustrate the evolu-
tion of the dipping fault simulation (Fig. 8). In frictionless
(and similarly in frictional) incompressible materials, active
yielding (indicated by the contours of maximum principal
strain rate) occurs in a narrow zone slightly skewed towards
the footwall (Fig. 8a). In the frictional compressible mate-
rial active yielding occurs in two conjugate zones (Fig. 8b).
In both cases, the zones of active yielding migrate with the
fault tip (Fig. 8a and b). The fault propagates three times

faster than the material slips (Table 1), and therefore the
material moves from the zone of active yielding ahead of
the fault tip to the hanging wall (Fig. 8a and b; Allmendin-
ger, 1998). The extent of the zones of active yielding
decreases during the experiment. In frictionless incompres-
sible materials at early stages, active yielding occurs from
the initial fault tip location in the footwall to the surface
(50%; Fig. 8a). Near the end of the experiment, active yield-
ing occurs preferentially ahead of the fault tip (100%; Fig.
8a). In the frictional compressible material the extent of
active yielding in the backlimb decreases during the simula-
tion (Fig. 8b). Localization of strain rate towards the fault
tip increases as the fault propagates in both simulations (Fig.
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8a and b). The strain rate increases as the fault tip is
approached like in the trishear model (Zehnder and Allmen-
dinger, 2000).

The profiles of the velocities parallel and perpendicular to
the fault change little during the experiments (Fig. 8c and d).
In general, as the fault propagates the extent of the zone of
velocity variation ahead of the fault tip slightly increases
(compare profiles at the middle and at the end of the experi-
ment; Fig. 8c and d). In frictionless incompressible materi-
als, the internal deformation of the hanging wall outside the
zone of velocity variation increases during the experiment
(compare the velocity perpendicular to the fault at the
middle and at the end of the experiment; Fig. 8c).

5.4. Varying material properties

We ran two sets of experiments in the frictional compres-
sible material, one set varying material strain hardening
(Fig. 9), and other set varying material friction and dilation
angles (Fig. 10). The purpose of the experiments is to eval-
uate the effects of these material properties on the finite
strain field of the resultant folds, especially in their back-
limbs. Fig. 9 shows the equivalent plastic strain and final
geometry produced by a dipping fault propagating in a strain
softening material (Fig. 9a), or in a strain hardening material
with a hardening modulus of 0.1 (Fig. 9b), 0.5 (Fig. 9¢), and
1% (Fig. 9d) the material Young’s modulus. Material strain
hardening affects the finite strain field of the resultant struc-
ture. Increasing strain hardening produces folds that have
lower equivalent plastic strains, lower fold amplitudes, and
larger fold widths (Fig. 9a—d). These observations apply
equally well to frictionless and frictional incompressible
materials. In the backlimb, the extent of the conjugate plas-
tic strain band, the magnitude of the equivalent plastic
strain, and the amount of backlimb rotation, all decrease
with increasing material strain hardening (Fig. 9a—d).

Fig. 10 illustrates the equivalent plastic strain and final
geometry generated by a dipping fault propagating in the
frictional compressible material with Drucker—Prager fric-
tion and dilation angles of 24 (Fig. 10a), 30 (Fig. 10b), 40
(Fig. 10c) and 46° (Fig. 10d). These values correspond to
Mohr—Coulomb friction angles of 15, 20, 30 and 40° (Eqs.
(1) and (2)). Increasing material friction and dilation angles
decreases the equivalent plastic strain, the fold amplitudes,
and increases the fold widths (Fig. 10a—d). Increasing mate-
rial friction and dilation angles increases the extent of the
backlimb plastic strain zone, the magnitude of the equiva-
lent plastic strain in the backlimb, and the amount of back-
limb rotation (Fig. 10a—d). Strain softening and dilation of
the material ahead of the propagating fault tip enhance
backlimb rotation.

5.5. Trishear modeling of the mechanical folds

The kinematics of fault propagation folding in elastoplas-
tic incompressible materials is very similar to the kine-
matics of the trishear model. The mechanically generated

fold geometries are trishear-like. One important question
remaining is whether trishear can replicate the geometry
and finite strain fields of the mechanical folds. Fig. 11
shows trishear modeling of folds generated by vertical and
dipping faults propagating in frictionless incompressible
materials. Forward trishear modelling using the best para-
meters from inverse modeling of the mechanical folds (Figs.
4a and 6a), produces geometries (dashed lines; Fig. 11a and
c) that are remarkably close to those of the mechanical folds
(continuous lines; Fig. 11a and c). The finite strain fields of
the best-fit trishear models (dashed lines; Fig. 11b and d) are
also very close in orientation and magnitude to the finite
strain fields of the numerical models (represented by maxi-
mum principal strain axes, thick black lines; Fig. 11b and d).
The orientation of the maximum principal strain axes and
the amount of stretch along these axes in trishear and in the
mechanical experiments are notably similar (Fig. 11b and
d). Near the surface, however, there are differences in the
geometries and strain fields of the two models, which are
related to surface effects (Fig. 11). Trishear replicates the
geometries and the finite strain fields of folds formed in
frictionless incompressible materials.

6. Discussion

A fault propagating through an elastoplastic material
produces a wave of deformation (i.e. yielding) in front of
its tip line. This deformation is localized in a zone slightly
asymmetric to the fault that migrates with the fault tip, and
in an additional backlimb zone radiating from the fault tip in
the case of the compressible material. Steady velocity fields
characterize the deformation. In incompressible materials,
the velocity vectors are slightly oblique to the fault and
change in magnitude and orientation across a triangular
zone symmetric to the fault. In the compressible material,
the velocity vectors rotate progressively upward in the hang-
ing wall and decrease linearly in magnitude but vary little in
orientation across a triangular zone. Strain builds up as the
fault propagates. The mechanical folds have forelimbs that
taper from large dip angles near the fault tip to low dip
angles at the surface, and in the case of the compressible
material, gentle anticlinal backlimbs. Finite plastic strain is
localized in a symmetric triangular zone, and in an addi-
tional backlimb zone in the compressible material.

The above description of fault propagation folding in
elastoplastic materials has many similarities with trishear
folding. In trishear a triangular zone of active shear migrates
with the propagating fault tip. Folding in this zone is
described by a steady velocity field that in its most basic
formulation (a linear velocity field for a symmetric triangu-
lar zone) is remarkably similar to the velocity field exhibited
by incompressible materials. Like the mechanical folds,
trishear folds have forelimbs that taper up-section and finite
strain fields localized in triangular zones symmetric to the
fault, with strain magnitudes that increase towards the fault
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tip. Trishear replicates remarkably well the geometry and
the finite strain of the folds formed in incompressible mate-
rials. Regarding these materials, the configuration and the
kinematics of trishear are thus mechanically reasonable, and
the model succeeds in its purpose: reproducing finite strain.

None of the current kinematic models reproduces the
progressive backlimb rotation and hanging wall uplift
exhibited by the compressible material. One can argue
that the compressible material with an associated flow rule
(= B), in which any increment of plastic shearing is
accompanied by a proportional increase of volume
(Mandl, 1988), is not a good representation of the brittle
crust. It results in dilational strains of 60—100% close to
the tip line and 10—-20% in the backlimb; unrealistic values
compared with the observed 10% dilational strain in defor-
mation bands formed at low confining pressures in low
porosity sandstones (Antonellini et al., 1994). Strayer and
Hudleston (1997) suggested that non-associated plastic flow
rules and incompressibility are indispensable to simulate the
localization of deformation in the brittle crust. Nonetheless,
incompressible materials fail to reproduce the observed
dilation of rocks under shearing in the brittle range
(Mandl, 1988; Morrow and Byerlee, 1989). The mechanical
behavior of the upper brittle crust must be a compromise
between the above two rheologies. The earth does not
expand, but the brittle crust dilates during deformation.
Backlimb rotation in compressible materials diminishes
with progressive deformation (Fig. 8b), and increases with
progressive material softening and dilation (Figs. 9 and 10).
Backlimb rotation has been observed in analog and numer-
ical models, and in field structures (e.g. Rip Van Winkle
Anticline in the Hudson Valley fold-thrust belt; Marshak,
1990). We believe that under environmental conditions
favorable to material dilation and strain softening, fault
propagation folds with gentle anticlinal folds may form
without a bend in the propagating fault, an idea almost here-
tical to the kinematic modeler.

The trishear grid search successfully predicts the P/S of
the mechanical experiments. However our numerical
models have one key limitation: the trajectory and the rate
of fault propagation are prescribed. The models are unsui-
table to explore the mechanical controls on P/S. One needs
to develop models in which the fault propagates naturally in
response to the loading conditions and the mechanical prop-
erties of the material. The trishear angles from inverse
modeling of the mechanical folds are in a range of 20—
30°, yet more open triangular zones (up to 100°) are
observed in real structures (Allmendinger, 1998), in
mechanical models of purely viscous materials (Johnson
and Johnson, 2002), and in distinct element models (Finch
et al., 2002). It is not clear under which mechanical condi-
tions more diffuse zones of distributed shear can be
produced in plastic materials and whether the kinematics
in these zones is consistent with the trishear model. Increas-
ing the yield stress and material strain hardening in elasto-
plastic materials slightly increases the apical angle of the

triangular zone (Fig. 9). But none of these material changes
may produce the diffuse zones of plastic deformation
observed in nature. Material anisotropy and heterogeneity,
which are lacking in our experiments, may be essential in
explaining such diffuse zones (Nifio et al., 1998). Further
research is needed to implement more realistic mechanical
models with ‘natural” fault tip propagation, and mechanical
anisotropy.
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