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Trishear in 3D. Algorithms, implementation, and limitations
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Abstract
The algorithms and implementation of pseudo-3D and true-3D trishear models are explained, including a strategy to model lateral fault prop-
agation. I show that the pseudo-3D algorithm is adequate and sufficient to model trishear in three-dimensions. Although ad-hoc, the pseudo-3D
algorithm preserves volume in simulations without and with lateral fault propagation. A disadvantage of the pseudo-3D algorithm is that it produces
very simple, and perhaps not realistic hanging wall geometries, specially in simulations in which the fault slip varies along strike. The true-3D
algorithm has a more elaborate and richer kinematics that produces more realistic hanging wall geometries. However, the true-3D algorithm con-
tains mathematical inconsistencies that result in considerable volume changes when the slip gradients along the tip line are high and the tip line is
highly oblique to the slip vector and/or the fault strike. The volume changes occur to a large extent in the hanging wall, and to a minor extent in the
forelimb and footwall areas.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Trishear is a kinematic model of fault propagation folding
in which the decrease in displacement along the fault is ac-
commodated by heterogeneous shear in a triangular zone radi-
ating from the tip line (Erslev, 1991; Allmendinger, 1998). The
kinematics of the model in two-dimensions is well described
by Zehnder and Allmendinger (2000). Thorough reviews of
the model and its applications are given by Allmendinger
et al. (2004) and Hardy and Allmendinger (submitted for
publication).

Trishear has been extended to three-dimensions using two
kind of formulations: a pseudo-3D formulation in which the
model is solved in serial cross sections all parallel to the
slip direction (Cristallini and Allmendinger, 2001), and
a true-3D formulation in which the kinematics is solved in
three-dimensions assuming volume conservation (Cristallini
et al., 2004).
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This note examines in detail the pseudo-3D and true-3D
algorithms, their implementation, their limitations, and possible
extensions such as lateral fault propagation. The pseudo-3D for-
mulation is computationally less intensive than the true-3D formu-
lation, and therefore this note also explores if the pseudo-3D
formulation is sufficient to model trishear in three-dimensions.

I conclude that in most situations the pseudo-3D formula-
tion is adequate to model trishear. Although the pseudo-3D al-
gorithm is not a complete 3D implementation (but rather a two
and a half implementation), the algorithm conserves volume
within acceptable limits in all situations. The true-3D formu-
lation is mathematically sounder and provides a richer kine-
matics in the hanging wall. However, volume changes in
a true-3D model can be significant in models with high slip
gradient along strike, such as lateral fault propagation.

The algorithms described in this note have been imple-
mented in a computer program, Trishear3D. The program
models the 3D geometry and finite strain of trishear fault re-
lated folds. Trishear3D is free for non-profit organizations,
and can be downloaded at: http://homepage.mac.com/nfcd/
work/programs.html. I encourage the reader to use the pro-
gram to verify the ideas discussed here.

http://homepage.mac.com/nfcd/work/programs.html
http://homepage.mac.com/nfcd/work/programs.html
mailto:nestor.cardozo@cipr.uib.no
mailto:nfcd@mac.com
http://www.elsevier.com/locate/jsg
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2. Algorithms

There are two main elements in a trishear formulation. The
first is a description of the velocity field of the model (a snap-
shot of the deformation), and the second is a description of the
evolution of the deformation (how the triangular zone of shear
migrates through the rock material). In Section 2, I describe
the velocity field of trishear according to the pseudo-3D and
true-3D algorithms. In Section 3, I describe the evolution of
the deformation.
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Fig. 1. Geometry of the pseudo-3D and true-3D trishear algorithms. Ts and Tn

are the fault tips. (a) Map view of the pseudo-3D algorithm. x and z are par-

allel and perpendicular to the slip vector v, respectively. (b) Map view of the

true-3D algorithm. x and z are perpendicular and parallel to the tip line, re-

spectively. (c) Cross section of the pseudo-3D and true-3D algorithms. y is

the pole of the fault. The line of section passes along the tip Ts but its orien-

tation (x-axis) in the pseudo-3D and true-3D algorithms is different. Other

symbols are explained in the text.
In the pseudo-3D algorithm (Cristallini and Allmendinger,
2001), trishear is solved in a series of cross sections, all parallel
to the plane defined by the slip vector v(x) and the pole to the
fault y (Fig. 1a, c). Within each xy cross section the model is
solved using the simplest 2D kinematics, a symmetric trishear
zone with vx linear in y and concentration factor equal to one
(Zehnder and Allmendinger, 2000, their Eqs. (2) and (6)).

The apical angle of the triangular zone of shear (trishear
angle) and/or the slip are allowed to vary along the direction
perpendicular to the slip vector (z-axis, Fig. 1a). If the x (par-
allel to slip), y (parallel to the pole to the fault), and z (perpen-
dicular to slip) coordinate system has origin at the tip Ts

(Fig. 1a), the linear variation of trishear parameters along
the z-axis is expressed as:

At ¼
ð4n �4sÞ

T01
; 4¼ 4sþAtz ð1Þ

Av ¼
ðvn� vsÞ

T01
; v¼ vs þAvz ð2Þ

where At and Av are the coefficients of variation of trishear an-
gle and slip, respectively, 4 is half the trishear angle in radians
(Fig. 1c), v is fault slip, T1

0
is the distance between the fault tips

along the z-axis, and the s and n subscripts stand for the Ts and
Tn tips (Fig. 1a).

Along an xy cross section (Fig. 1c) the velocity field is de-
fined as:

vx ¼ v; vy ¼ 0; for y� xcm ð3Þ

vx ¼ 0; vy ¼ 0; for y��xcm ð4Þ

vx ¼
v

2

�
y

xcm
þ 1

�
; for xcm� y��xcm ð5aÞ

vy ¼
mv

4

��
y

xcm

�2

�1

�
; for xcm� y��xcm ð5bÞ

where m is the tangent of 4, and xc is the coordinate in x cor-
rected by the difference between the z-axis and the tip line:

xc ¼ x�
�

z

Tn;z

�
Tn; x ð6Þ
Tn,x and Tn,z are the x and z coordinates of the tip Tn (Fig. 1a).
The hanging wall area above the triangular zone of shear
translates with a velocity v (Eq. (3)), the footwall area below
the triangular zone is fixed (Eq. (4)), and particles inside the
triangular zone move according to Eq. (5). Notice that Eqs.
(3)e(5) are compatible at the boundaries of the triangular
zone ( y¼ xcm and y¼�xcm). Along an xy cross section the
velocity vectors look like Fig. 2a (left and middle).

The pseudo-3D formulation is an ad-hoc extension of the
2D formulation. There is no mathematical proof of volume
conservation. The fundamental assumption of the algorithm
is that there is no movement along the z-axis (perpendicular
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Fig. 2. Velocity fields of the true-3D algorithm. (a) Simplest velocity field with no variation of slip or trishear angle, and (Rþ a) equal to 90�. This velocity field is

similar to the velocity field of the pseudo-3D algorithm. (b) Velocity field with variation of trishear angle along the tip line and (Rþ a) equal to 60�. (c) Velocity

field with variation of slip along the tip line and (Rþ a) equal to 60�. Velocity field was computed using Eqs. (22) and (23). (d) Similar to (c) but velocity field

computed using Eqs. (24) and (25). In all cases the velocity vectors are exaggerated 50 times.
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to the slip vector, Fig. 2a, right). This might not ensure volume
conservation. However, Cristallini and Allmendinger (2001)
show that pseudo-3D models with variable trishear parameters
conserve volume within reasonable limits. I reach similar con-
clusions in Section 4.3.
2.2. True-3D
In the true-3D algorithm (Cristallini et al., 2004), the kine-
matics of trishear is solved in three-dimensions using the
principle of volume conservation. Cristallini et al. (2004)
describes in detail the equations of the true-3D algorithm. In
this section, I will go over Cristallini et al. (2004) derivation
in order to understand the true-3D algorithm but also to point
out some problems with the formulation.

The true-3D algorithm is based on an xyz coordinate system
with x perpendicular to the tip line, y perpendicular to the fault
plane (i.e. pole to the fault), and z parallel to the tip line. The
origin of this coordinate system is at the tip Ts (Fig. 1b, c). As
well as in the pseudo-3D algorithm, a symmetric trishear zone
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is assumed (Fig. 1c). Along the tip line (z-axis), linear changes
in trishear angle, and/or slip are allowed:

At ¼
ð4n �4sÞ

T1

; 4¼ 4sþAtz ð7Þ

Av ¼
ðvn� vsÞ

T1

; v¼ vs þAvz ð8Þ

where T1 is the length of the tip line (Fig. 1b), and the other
symbols are as above. Notice that in the pseudo-3D algorithm,
the variation of the trishear parameters is defined along the
direction perpendicular to the slip vector (Eqs. (1) and (2)),
while in the true-3D algorithm, the variation of the parameters
is defined along the tip line (Eqs. (7) and (8)).

In the hanging wall and footwall regions outside the trian-
gular zone of shear (Fig. 1c), the velocity field is defined by
the following equations:

vx ¼ v sin
�
Rþ a

�
; vy ¼ 0; vz ¼ vcos

�
Rþ a

�
; for y� xm

ð9Þ

vx ¼ 0; vy ¼ 0; vz ¼ 0; for y��xm ð10Þ

where R is the angle between the slip vector and the fault
strike, and a is the angle between the tip line and the fault
strike (Fig. 1b). Both angles, R and a, are measured on the
fault plane and are expressed in radians. The hanging wall
area above the triangular zone translates with a velocity v
(Eq. (9)), and the footwall area below the triangular zone is
fixed (Eq. (10), Fig. 1c).

Inside the triangular zone of deformation (xm� y��xm),
the simplest linear in y velocity field is assumed for the vx and
vz velocities:

vx ¼
va;x

2

h y

xm
þ 1
i

ð11Þ

vz ¼
va;z

2

h y

xm
þ 1
i

ð12Þ

where va,x and va,z are the vx and vz velocities in the hanging
wall area above the triangular zone (Eq. (9), Fig. 1c). Notice
that Eqs. (9)e(12) are compatible at the boundaries of the tri-
angular zone ( y¼ xm and y¼�xm).

To find vy inside the triangular zone, volume conservation
(i.e. flow incompressibility) is applied:

div v¼ vvx

vx
þ vvy

vy
þ vvz

vz
¼ 0 ð13Þ

The x term of Eq. (13) is easy to derive:

vvx

vx
¼�va;x

2

y

x2m
¼�va;x

2

y

x2 tan 4
ð14Þ

The z term of Eq. (13) is more difficult to derive, since both
va,z and m vary along the z-axis. Using Eqs. (7)e(9); Eq. (12)
can be rewritten as:
vz ¼
½vsþ ðAvzÞ�cosðRþ aÞ

2

�
y

x tan½4sþ ðAtzÞ�
þ 1

�
ð15Þ

For convenience let’s call the first factor of Eq. (15) Az, and
the second factor Bz. The partial derivative of vz with respect to
z is then:

vvz

vz
¼ A0zBzþAzB

0
z ð16Þ

A0z ¼
Av cosðRþ aÞ

2
ð17Þ

B0z ¼�
y

x
Jz ð18Þ

Jz ¼
At

tan24 cos24
ð19Þ

Eqs. (16)e(19) correspond to Eqs. (13)e(16) of Cristallini
et al. (2004). The reader should be aware that there are typo-
graphical errors in Eqs. (15) and (16) of Cristallini et al.
(2004). We now have all terms to compute the partial derivative
of vy with respect to y. Using Eqs. (13)e(19):

vvy

vy
¼�vvx

vx
� vvz

vz
ð20Þ

vvy

vy
¼ va;xy

2x2 tan4
�A0z

�
y

x tan4
þ 1

�
þAzJz

y

x
ð21Þ

vy can be computed by integrating Eq. (21) in y:

vy ¼
va;xy

2

4x2tan4
� A0zy

2

2xtan4
�A0zyþ

AzJzy
2

2x
þC ð22Þ

Eqs. (21) and (22) correspond to Eqs. (18) and (19) of Cris-
tallini et al. (2004). Again, there are typographical errors in
Eqs. (18) and (19) of Cristallini et al. (2004) publication.

The constant of integration C can be found by applying the
condition that vy is zero at the upper ( y¼ xm) and lower
( y¼�xm) boundaries of the triangular zone (Eqs. (9) and
(10), Fig. 1c). However, an examination of Eq. (22) reveals
a fundamental problem. Eq. (22) is not symmetric in y. The
third term of this equation is a function of y rather than y2.
This means that there is not a unique value of C that satisfies
the velocity in y condition at both, the upper and the lower
boundaries of the triangular zone.

Cristallini et al. (2004) use a value of C that honors the ve-
locity conditions at the upper boundary of the triangular zone
(Cristallini, personal communication):

C¼�va;xtan4

4
þA0zx tan4

2
þA0zx tan4�AzJzx tan24

2
ð23Þ

Another alternative is to disregard the third term of Eq.
(22):

vy ¼
va;xy

2

4x2tan4
� A0zy

2

2x tan4
þAzJzy

2

2x
þC ð24Þ
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C¼�va;xtan4

4
þA0zx tan4

2
�AzJzx tan24

2
ð25Þ

Both approaches are mathematically incorrect when Az

0
is

not zero. Another problem of the true-3D algorithm is that
the volume is not always preserved in the hanging wall region
outside the triangular zone. The divergent (Eq. (13)) of the ve-
locity field in the hanging wall region above the triangular zone
(Eq. (9)) is not zero, but rather AvcosðRþ aÞ. In the true-3D
algorithm, volume is not preserved neither in the triangular
zone nor in the hanging wall region above it, when the slip
varies along the fault (Av s 0), and the tip line is oblique to
the slip vector and/or the fault strike (Rþ a is not 90 or
270�). In this situation Az

0
(Eq. (17)) is not zero.

Fig. 2a shows the velocity field of a true-3D model with no
variation of slip or trishear angle along the tip line (Av¼ 0,
At¼ 0), and (Rþ a) equal to 90�. In this case, vz, Az, Az

0
, and

Jz are all zero and Eqs. (11), (12) and (22) reduce to Eq. (5),
which is the velocity field of the pseudo-3D model. In fact, as
long as (Rþ a) is 90�, the pseudo-3D and true-3D formulations
are the same, even in cases in which the trishear angle and/or
the slip varies along the tip line (At s 0, Av s 0). The model
of Fig. 2a is mathematically correct and preserves volume.

Fig. 2b shows a more interesting true-3D model. The trishear
angle varies from 30 to 90� along a 500 units long tip line
(At¼ 0.001), (Rþ a) is 60�, and slip is constant (Av¼ 0). In
this model there is movement along the z direction (Fig. 2b
right) and Az and Jz are not zero. Compared to true-3D models
with (Rþ a) equal to 60� and no trishear angle variation, the
component of the velocity in the �y direction is enhanced in
the triangular zone in the variable trishear angle model
(Fig. 2b). This case is mathematically correct and preserves vol-
ume. There are contributions from the Az and Jz terms, but no
contribution from the Av and Az

0
terms.

Fig. 2c, d show the velocity field of a true-3D model in
which the slip varies from 1.0 to 2.0 along a 500 units long
tip line (Av¼ 0.002), (Rþ a) is 60�, and trishear angle is
60� and is constant (At¼ 0). Fig. 2c was computed using
Eqs. (22) and (23) and Fig. 2d using Eqs. (24) and (25). Az

0

in this model is non-zero and there is movement along the z
direction (Fig. 2c, d right). If the Az

0
term in y of Eq. (22) is

considered (Fig. 2c), the component of the velocity in the y
direction is enhanced in the triangular zone (compare
Fig. 2a, c). The velocity field is correct for y� 0, but incorrect
for y< 0. At the lower boundary of the triangular zone, the ve-
locity vectors are incompatible with the fixed condition of the
footwall (Fig. 2c). If the Az

0
term in y of Eq. (22) is disregarded

(Fig. 2d), the increase of the velocity in the y direction is not
as significant as in the model of Fig. 2c, particularly in the
lower half of the triangular zone, and there are no velocity in-
compatibilities at the boundaries of the triangular zone. The
differences between the models of Fig. 2c, d are more signif-
icant in the lower half of the triangular zone, and in regions of
the upper half of the triangular zone with high x values.

As discussed before, models such as those of Fig. 2c, d are
not mathematically correct and do not preserve volume. In
Section 4.3, I discuss the volume changes involved in such
models. In some cases, the volume changes are small and to
an extent acceptable. In other cases, the volume changes are
significant, particularly when the gradient of slip Av is high,
and the tip line is highly oblique to the slip vector and/or to
the fault strike.

3. Implementation

Given the velocity field, the resultant deformation can be
computed by incrementally moving the triangular zone of shear
through the rock material. The movement of the triangular
zone is defined by the rate of fault propagation to fault slip
(P/S ). As well as the other trishear parameters, the P/S can
vary along the z-axis.

For both the pseudo-3D and true-3D formulations, the sim-
ulation of the deformation involves transforming the coordi-
nates of each particle from a reference east-north-up (enu)
coordinate system, to an x0y0z0 stationary coordinate system
with origin at the initial location of the tip Ts (Tso), and finally
to an xyz mobile coordinate system with origin at the current
location of the tip Ts (Fig. 3a, b).

Once the particles are in the xyz coordinate system, their
velocities are computed using the equations of Section 2,
and their positions are updated. This is done every increment
of slip. At the end of the deformation, the particles are trans-
formed back to the enu coordinate system and plotted for
visualization.
3.1. Pseudo-3D
In the pseudo-3D implementation, the stationary x0y0z0 and
mobile xyz coordinate systems have similar orientation, with x
parallel to the slip vector, y perpendicular to the fault, and z
perpendicular to the slip vector (Fig. 3a). The variation of P/
S along the z-axis (perpendicular to the slip vector), is defined
by:

Ap ¼
�
ðP=SÞn�ðP=SÞs

�
T01

; ðP=SÞ ¼ ðP=SÞsþApz ð26Þ

The transformation between the stationary x0y0z0 and mo-
bile xyz coordinate systems is:

x ¼ x0 � ðP=SÞs
��vs

��i; y¼ y0; z¼ z0 ð27Þ

where i is the number of slip increments. To compute the ve-
locity field using Eqs. (3)e(5), x should be corrected for the
variation of P/S along the z-axis, and the difference between
the z-axis and the initial orientation of the tip line:

xc ¼ xþ
	
ðP=SÞs

��vs

��i� ðP=SÞ
��v��i
�

�
z

Tno;z

�
Tno;x0 ð28Þ

which reduces to:

xc ¼ x0 � ðP=SÞ
��v��i�

�
z

Tno;z

�
Tno;x0 ð29Þ
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where Tno,x0 and Tno,z are the x0 and z coordinates of the initial
location of the tip Tn (Tno in Fig. 3a).

There are three things to keep in mind with regard to the
pseudo-3D implementation: (i) The stationary x0y0z0 and mobile
xyz coordinate systems are coaxial, (ii) The orientation of the
mobile xyz coordinate system does not change throughout the
deformation, and (iii) T1

0
and the variation of trishear parameters

At, Av, Ap, remain constant throughout the deformation. These
characteristics save considerable computation time: (i) T1

0
, At,
Av, and Ap can be computed before the deformation, (ii) The
only parameter that needs to be updated every increment of
slip is xc (Eq. (29)), and (iii) The velocity field can be directly
used to update the position of particles in the stationary x0y0z0

coordinate system.
Another feature that is convenient about the pseudo-3D

model, is that neither the stationary x0y0z0 nor the mobile
xyz coordinate systems are related to the tip line. This makes
easy to introduce more elaborate variations of trishear param-
eters than those of Eqs. (1), (2) and (26). For example, in my
Trishear3D program in addition to the standard variation of
trishear parameters (Eqs. (1), (2) and (26)), I implemented a bi-
linear variation of trishear parameters, from the tips to the
mid-point of the tip line. Other programs (i.e. Cristallini’s
Trishear in 3D program) allow the user to digitize the variation
of trishear parameters along fault strike.
3.2. True-3D
In the true-3D implementation, the stationary x0y0z0 and
mobile xyz coordinate systems have different orientations.
The stationary x0y0z0 coordinate system has axes parallel to
the fault up-dip direction (x0), perpendicular to the fault (y0),
and parallel to the fault strike (z0, Fig. 3b). The mobile xyz
coordinate system has axes perpendicular to the tip line (x),
perpendicular to the fault (y), and parallel to the tip line (z,
Fig. 3b). The mobile xyz coordinate system is attached to the
tip line, and therefore its orientation can vary throughout the
deformation.

The first part of the implementation consists of finding in
the stationary x0y0z0 coordinate system, the current length
(T1) and orientation with respect to the fault strike of the tip
line (a, Fig. 3b). For convenience, let’s call the propagation
of the Ts and Tn tips Ps and Pn, respectively:

Ps ¼ ðP=SÞs
��vs

��i ð30aÞ

Pn ¼ ðP=SÞn
��vn

��i ð30bÞ
The x0, z0 coordinates of the Ts and Tn tips (Fig. 3b) are:

Ts;x0 ¼ Ps cos
�p

2
�R
�

ð31aÞ

Ts;z0 ¼ Ps cosðRÞ ð31bÞ

Tn;x0 ¼ Tno;x0 þPn cos
�p

2
�R
�

ð31cÞ

Tn;z0 ¼ Tno;z0 þPn cosðRÞ ð31dÞ

where Tno,x0 and Tno,z0 are the x0 and z0 coordinates of the initial
location of the tip Tn (Tno in Fig. 3b). The length T1 of the tip
line (Fig. 3b) is:

T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTn;x0 � Ts;x0 Þ2þðTn;z0 � Ts;z0 Þ2

q
ð32Þ
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The angle a that the tip line makes with the fault strike
(Fig. 3b) is:

a¼ arctan

�
Ts;x0 � Tn;x0

Tn;z0 � Ts;z0

�
ð33Þ

The transformation between the stationary x0y0z0 coordinate
system and the mobile xyz coordinate system (Fig. 3b) is:

x ¼ ðx0 � Ts;x0 Þcos
�
a
�
þ ðz0 � Ts;z0 Þcos

�p

2
� a
�

ð34aÞ

y¼ y0 ð34bÞ

z¼ ðx0 � Ts;x0 Þcos
�p

2
þ a
�
þ
�
z0 � Ts;z0

�
cos
�
a
�

ð34cÞ

Once the particles are in the mobile xyz coordinate system,
their velocities are computed using Eqs. (9)e(12) and Eqs.
(22) or (24), and their positions are updated.

By comparison to the pseudo-3D implementation, the true-
3D implementation is more elaborate: (i) The mobile xyz coor-
dinate system can change progressively in orientation with
deformation, (ii) The orientation and length of the tip line can
change progressively in orientation with deformation and there-
fore T1, a, At, and Av should be computed every increment of slip,
and (iii) Contrary to the pseudo-3D implementation, the transfor-
mation between the stationary x0y0z0 and mobile xyz coordinate
system involves more than just a simple translation. Updated
particle positions in the mobile xyz coordinate system should
be transformed back to the stationary x0y0z0 coordinate system.

The true-3D implementation is therefore more computation-
ally intensive than the pseudo-3D implementation. In Trish-
ear3D, true-3D models take twice as long as pseudo-3D
models. Also the fact that the xyz coordinate system of the
true-3D algorithm is attached to the tip line makes it impossible
to implement more complex variations of trishear parameters
along the tip line than the linear variation between the tips of
Eqs. (7) and (8).
3.3. Lateral fault propagation
An interesting extension of the pseudo-3D and true-3D
implementations is lateral fault propagation. In this case, the
fault propagates and grows in length across and along strike
(Fig. 3c). The slip on one of the fault tips is non-zero (Ts in
Fig. 3c) and the slip on the tip that propagates along strike
(but not across strike) is set to zero (Tn in Fig. 3c). During
deformation, the propagation along strike Pl (Fig. 3c) is:

Pl ¼ ðP=SÞl
��vt

��i ð35Þ

where (P/S )l is the lateral propagation to slip ratio, and vt is
the slip at the tip that propagates across strike (Ts in Fig. 3c).

The tip line grows in length with deformation, and therefore
in the pseudo-3D implementation, T1

0
and the variation of the

trishear parameters along the z-axis, At, Av, and Ap, need to
be updated every increment of slip:

T01 ¼ Tno;zþPl sin
�
R
�

ð36Þ
where Tno,z is the z coordinate of the initial location of the tip
Tn (Tno in Fig. 3c). Once T1

0
is known, At, Av, and Ap are updated

using Eqs. (1), (2) and (26). If the tip Tn moves along strike
(like in Fig. 3c), the trishear parameters for a given particle
are computed using the right side of Eqs. (1), (2) and (26). If
on the other hand the tip Ts (which is the origin of the xyz
coordinate system) moves along strike, the trishear parameters
should be computed using as reference the tip Tn:

4¼ 4n�AtðTn;z� zÞ ð37Þ

v¼ vn�AvðTn;z� zÞ ð38Þ

ðP=SÞ ¼ ðP=SÞn�ApðTn;z� zÞ ð39Þ

where Tn,z is the coordinate in z of the tip Tn. This strategy
avoids performing additional transformations of the xyz coordi-
nate system. Compared to the standard pseudo-3D formulation
(Section 3.1), the extra burden of lateral fault propagation is
computing the distance between the fault tips and the variation
of trishear parameters along the z-axis every increment of slip.

In the true-3D formulation, lateral fault propagation is in-
troduced when computing the positions of the fault tips in
the stationary x0y0z0 coordinate system. For example if, as in
Fig. 3c, the tip Tn propagates along strike, Eq. (31) becomes:

Ts;x0 ¼ Ps cos
�p

2
�R
�

ð40aÞ

Ts;z0 ¼ Ps cosðRÞ ð40bÞ

Tn;x0 ¼ Tno;x0 ð40cÞ

Tn;z0 ¼ Tno;z0 þPl ð40dÞ

where Tno,x0 and Tno,z0 are the x0 and z0 coordinates of the initial
location of the tip Tn (Tno in Fig. 3c). After this, the solution is
similar to the standard true-3D implementation (Eqs. (32)e(34)).

4. Modeling

In Section 4, I compare pseudo-3D and true-3D trishear
models. I also check the validity of the models in terms of vol-
ume conservation. All models have initially horizontal beds and
horizontal fault tip line (a is 0). Additionally the slip is perpen-
dicular to the fault strike (R is 90�). Under these conditions the
xyz coordinate systems of the pseudo-3D and true-3D models
(Fig. 3a, b) are the same at the beginning of the deformation.
4.1. No lateral fault propagation
Figs. 4 and 5 show vertical cross sections across pseudo-3D
(black lines) and true-3D (gray lines) trishear models of reverse
(Fig. 4) and normal (Fig. 5) faults propagating in the up-dip
direction. The length of the fault along strike is 500 units and
the cross sections are perpendicular to strike and are drawn
at the Ts (n¼ 0) and Tn (n¼ 500 units) fault tips. The reverse
fault dips 30� (Fig. 4), and the normal fault 60� (Fig. 5). The
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lower five beds are pre-growth, and the upper four beds are
growth strata.

Fig. 4a illustrates a reverse fault model with variable P/S.
The trishear angle is 60�, the total, cumulative slip is 250 units
accumulated over 125 increments (slip¼ 2 units), and the P/S
varies from 1.0 at Ts to 2.0 at Tn (Ap¼ 0.002). In the cross sec-
tion at n¼ 0 (Fig. 4a left side), the pseudo-3D model (black
lines) shows a distinct kink in the pre-growth and growth
strata, typical of trishear models with P/S¼ 1 (Allmendinger,
1998). This geometry is also exhibited by the true-3D model
(gray lines), but the angularity and tightness of the anticlinal
hinge slightly decrease up-section from the pre-growth to the
growth strata. In the cross section at n¼ 500 units (Fig. 4a
right side), the pseudo-3D geometry (black lines) consists of
a broad anticline and syncline cut by the fault. The true-3D ge-
ometry (gray lines) is very similar, with the exception of minor
differences in the growth strata. The slight differences between
the pseudo-3D and true-3D models are due to the different ori-
entation of the xyz coordinate system of these models. Con-
trary to the pseudo-3D model, the orientation of xyz changes
progressively with deformation in the true-3D model, because
Tn propagates faster than Ts. In the pseudo-3D model, the
n¼ 0 and n¼ 500 units cross sections are aligned with the
x-axis, and P/S is constant in the sections. In the true-3D
model, the n¼ 0 and n¼ 500 units cross sections are not
aligned with the x-axis, and P/S is not constant in the sections



a

b

c

n = 0 n = 500

At = 0.001

Av = -0.002

P/S = 1.0 P/S = 2.0

TA = 30 TA = 90

S = -1 S = -2

d

Av = -0.002

S = -1 S = -2

Ap = 0.002

Fig. 5. Vertical cross sections across pseudo-3D (black lines) and true-3D (gray lines) trishear models of a 60� dipping, normal fault with (a) variable P/S,

(b) variable trishear angle, and (c, d) variable slip. In (c) the true-3D model was computed using Eqs. (22) and (23), and in (d) using Eqs. (24) and (25). All models

are 500 units along the fault strike. Cross sections are perpendicular to the fault strike and are located at the frontal (n¼ 0) and rear (n¼ 500 units) face of the

models. Lower five beds are pre-growth, and upper four beds are growth strata.

335N. Cardozo / Journal of Structural Geology 30 (2008) 327e340
but rather increases up-section. Also the length of the tip line
T1 increases with deformation, such that Ap is not constant but
rather decreases with deformation. P/S variations in a cross
section have more influence in the resultant fold geometry at
low P/S (around 1.0, Fig. 4a left side) than at high P/S (around
2.0, Fig. 4a right side) values.

Fig. 4b illustrates a reverse fault model with variable trish-
ear angle. The P/S is 1.5, the total slip is 250 units
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accumulated over 125 increments (slip¼ 2 units), and the
trishear angle varies from 30� at Ts to 90� at Tn (At¼ 0.001).
The resultant folds become wider and the fold hinges more
rounded as the trishear angle increases along the fault from
Ts (Fig. 4b left side) to Tn (Fig. 4b right side). In this case
the pseudo-3D (black lines) and true-3D (gray lines) geome-
tries are the same. At is not zero, but throughout the deforma-
tion (Rþ a) is 90�, and the velocity equations of the true-3D
model reduce to those of the pseudo-3D model (Section 2).
Another scenario in which this can happen is when the slip
vector is perpendicular to the fault, the tip line before the
deformation is horizontal, and the P/S is zero (no fault propa-
gation). In this case, (Rþ a) remains 90 or 270� throughout
the deformation, even if the slip along strike varies (Av s 0).

Fig. 4c, d show a reverse fault model with variable slip. The
P/S is 1.5, the trishear angle is 60�, and the total slip varies
from 125 units at Ts to 250 units at Tn. The total slip is reached
over 125 increments. The slip varies therefore from 1 unit at Ts

to 2 units at Tn (Av¼ 0.002). In Fig. 4c the true-3D model was
computed using Eqs. (22) and (23), and in Fig. 4d using Eqs.
(24) and (25). Similar to the variable P/S simulation (Fig. 4a),
differences in the geometry between the pseudo-3D (black
lines) and true-3D (gray lines) models in the variable slip
simulation (Fig. 4c, d) are partially due to the different ori-
entation of the xyz coordinate systems of these models. In
the pseudo-3D model the orientation of the xyz coordinate
system does not change with deformation, but in the true-
3D model the xyz coordinate system rotates progressively
with deformation because Tn propagates more than Ts. Slip
is not constant in the n¼ 0 and n¼ 500 cross sections but
rather increases up-section. Also the length of the tip line
T1 increases with deformation, such that Av is not constant
but rather decreases with deformation. But additionally to
this, since Av is not zero and (Rþ a) is not 90�, the differ-
ences between the pseudo-3D and true-3D models are also
due to the contribution of the Az

0
term in Eqs. (22) and

(23) (Fig. 4c) or Eqs. (24) and (25) (Fig. 4d). If the Az

0

term in y of Eq. (22) is considered (Fig. 4c), the differences
between the pseudo-3D and true-3D models persist from the
anticlinal hinge to the footwall area. In the footwall area, the
beds of the true-3D model are displaced upwards relative to
the beds of the pseudo-3D model, and this upward displace-
ment increases away from the fault (Fig. 4c). Footwall re-
gions away from the fault that at some point in the
deformation were inside the triangular zone of shear and
had high x values, experienced high velocity in the y direc-
tion (Eqs. (22) and (23)). If the Az

0
term in y of Eq. (22) is

not considered (Eqs. (24) and (25), Fig. 4d), the differences
between the pseudo-3D and true-3D models are concentrated
in the anticlinal hinge area and, contrary to the model of
Fig. 4c, decrease away from the fault. Notice also that in
the true-3D models, the backlimb of the anticline dips gently
away from the anticlinal hinge area, as opposed to the back-
limb of the pseudo-3D model which is flat (Fig. 4c, d).

Analogous simulations to those of Fig. 4, for a 60� dipping
normal fault show similar differences between the pseudo-3D
(black lines) and true-3D (gray lines) models (Fig. 5). The
differences are mainly due to the different orientation of the
xyz coordinate system of the pseudo-3D and true-3D models
(Fig. 5a, c, and d). However, compared to the reverse fault sim-
ulations (Fig. 4), the differences between the pseudo-3D and
true-3D models in the folded area of the normal fault simulations
(Fig. 5) are almost insignificant. This is because in the normal
fault simulations the trishear zone is at higher angle to bedding
and therefore moves faster through the beds (i.e. bed particles
spend less time inside the trishear zone). Also, if at any stage
of the deformation bed particles are inside the triangular zone,
they are close to the tip line (low x values), which is the area
in which the pseudo-3D and true-3D models differ less (Fig. 2).
4.2. Lateral fault propagation
Lateral fault propagation with (P/S )l greater than P/S is
a special case in which the slip gradient along the fault (Av)
and the obliquity of the tip line with respect to strike (a)
decrease with deformation. At the beginning of the deforma-
tion the length of the tip line is short, the slip at one tip is
non-zero and at the opposite tip is zero. Av and the incremental
change of a are high. As slip accumulates and the fault grows
in length along strike faster than it propagates across strike, Av

and a decrease. In terms of a comparison between pseudo-3D
and true-3D models, maximum differences between the models
exist at the beginning of the deformation and the differences
decrease as deformation proceeds.

Fig. 6 shows lateral fault propagation models of 30� dipping
reverse (left side) and 60� dipping normal (right side) faults. In
both, the reverse and normal fault simulations, the trishear
angle is 60�, the magnitude of cumulative slip varies from
250 units at Ts to 0 at Tn, the slip is accumulated over 125
slip increments (magnitude of slip¼ 2 units at Ts and 0 at
Tn), the P/S is 1.5, the (P/S )l is 3.0, and the initial fault length
along strike is 50 units. The fault propagates twice as fast in the
strike direction as in the up-dip direction.

Topographic contours on the deformed bed of the pseudo-3D
(Fig. 6a), true-3D using Eqs. (22) and (23) (Fig. 6b), and true-
3D using Eqs. (24) and (25) (Fig. 6c) models, illustrate a com-
plex displacement field, with maximum relief and maximum
dip of the forelimb at Ts and decreasing towards Tn. There
are differences between the pseudo-3D and the true-3D simula-
tions in the hanging wall, forelimb, and footwall areas. In the
hanging wall, the elevation contours of the pseudo-3D model
are parallel to the slip vector (i.e. perpendicular to fault strike,
Fig. 6a), while those of the true-3D models are oblique to the
slip vector (Fig. 6b, c). In cross sections perpendicular to strike,
the hanging wall area is flat in the pseudo-3D model (Fig. 6a),
but dips towards the hanging wall in the true-3D models
(Fig. 6b, c). This is because in the true-3D models the orienta-
tion of the xyz coordinate system changes progressively with
deformation, resulting in a richer kinematics in the hanging
wall. In the forelimb area the bed is steepest in the pseudo-
3D model (Fig. 6a), and least steep in the true-3D simulation
using Eqs. (22) and (23) (Fig. 6b). In the footwall, the elevation
contours of the pseudo-3D model return in a relatively short dis-
tance to the regional elevation of the bed (Fig. 6a), while in the
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true-3D models the footwall experiences upward displacement
(Fig. 6b, c). This upward displacement is significant in the
model in which the Az

0
term in y of Eq. (22) is considered

(Fig. 6b). In this case footwall areas away from the fault that
at some point in the deformation were inside the triangular
zone and had high x values, experienced high velocity in the
y direction (Eqs. (22) and (23)). In the model in which the Az

0

term in y of Eq. (22) is not considered (Fig. 6c), the upward dis-
placement of the footwall is less significant and the footwall
topography is closer to that of the pseudo-3D model (Fig. 6a).
4.3. Volume conservation
In this section, I check the correctness of the pseudo-3D
and true-3D models by computing the change of volume of
a representative group of 3D simulations, including those of
Figs. 4e6. If a pseudo-3D or true-3D model is correct, it
should preserve volume. The change of volume was computed
by measuring the initial and final volume between two beds
that are not cut by the fault and that initially were flat and
vertically separated by a distance of 25 units. The volume
between the beds was estimated by subtracting the volumes
of the upper and lower beds to a datum. The volume from
a bed to the datum was computed by summing up the volume
contribution of each of the quadrilateral cells that make the
bed, mainly the average area of the quadrilateral times the
average height of the quadrilateral to the datum. Clearly, there
are errors in the computation. These errors increase with the
tightness of the fold and the magnitude and relative variation
of dip of its forelimb.

Fig. 7 shows the percent, relative volume change (differ-
ence of final and initial volume divided by initial volume),
of pseudo-3D and true-3D simulations of 30� reverse (white
area) and 60� normal (gray area) faults. All models have slip
perpendicular to fault strike (R is 90�). This facilitates the
computation of volume change. Models NV (no variation of
trishear parameters along strike), TAV (variation of trishear
angle along strike, Figs. 4b and 5b), NP (no fault propagation
but variation of slip along strike), and VPS (variation of P/S
along strike, Figs. 4a and 5a), are all cases in which the
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true-3D implementation contains no inconsistencies (Az
0 is

zero, Section 2). These true-3D trishear models (triangles in
Fig. 7) should yield no volume change. This is not exactly
the case in Fig. 7 because of errors in the volume change com-
putation which can be up to 2% (model NP). Notice that in the
NV to VPS simulations the volume change of pseudo-3D
models (squares in Fig. 7) and true-3D models (triangles in
Fig. 7) is practically the same, even in the VPS simulation
(Figs. 4a and 5a) where the pseudo-3D and true-3D models
have different solution xyz coordinate systems (Section 3).
True-3D and pseudo-3D models preserve volume in the NV
to VPS simulations.

In simulations with variable slip along strike, SV (variation
of slip along strike, Figs. 4c, d and 5c, d) and LP (lateral fault
propagation, Fig. 6), the volume change of true-3D models can
be considerable, particularly in reverse faults (Fig. 7). This is
because in the SV and LP simulations, Az

0 is not zero (Section
2). In the reverse fault, SV simulation, for an along-strike slip
gradient (Av) of 0.002, the volume change of pseudo-3D
(squares in Fig. 7), true-3D using Eqs. (22) and (23) (non-
filled triangles in Fig. 7), and true-3D using Eqs. (24) and
(25) (filled triangles in Fig. 7) models, is 1.2, 3.3, and 4.5%,
respectively. The volume change becomes more significant
for higher Av values. For example, for Av of 0.003, the volume
change is 1.7, 6.3, and 8.7%, respectively. Notice that in both
cases, the volume change of the pseudo-3D implementation is
below the 2% resolution limit of the computation. The pseudo-
3D formulation preserves volume in the SV simulation, but the
true-3D formulation does not. Volume changes of the true-3D
formulation are to a certain degree acceptable in normal fault
simulations and in reverse fault simulations with low slip
gradients (Av< 0.002, Fig. 4c, d). True-3D models with higher
slip gradients have significant volume changes and are
questionable.

The LP (lateral fault propagation, Fig. 6) simulation is the
most challenging and where volume changes are more evident
(Fig. 7). Volume change in the LP reverse fault simulation for
the pseudo-3D, true-3D using Eqs. (22) and (23), and true-3D
using Eqs. (24) and (25) models, is 2.4, 13.7, and 18.6%,
respectively. In the LP normal fault simulation, the volume
change is 4.3, 6.2, and 3.3%, respectively. Volume changes
of the pseudo-3D formulation are to some extent acceptable,
specially if one considers that errors in the volume change
computation can be significant. Volume changes of the true-
3D formulation are acceptable in the LP normal fault simula-
tion (the true-3D model using Eqs. (24) and (25) yields in fact
lower volume changes than the pseudo-3D model, Fig. 7), but
definitely not acceptable in the LP reverse fault simulation. In
this case, the true-3D formulation is questionable.

5. Discussion

The algorithms and implementation strategies presented in
this note provide a versatile kinematic framework to model the
3D geometry and finite strain of reverse and extensional fault
propagation folds. Along strike changes of fault parameters,
oblique slip, up-dip and/or along strike fault propagation, pro-
duce complex pre-growth and growth bed geometries, and
complex finite strain fields. There is, however, one limitation.
The pseudo-3D and true-3D algorithms can only model fault
propagation folding ahead of planar, constant dip faults. Fold-
ing in front of faults that change in dip along strike cannot be
modeled. Backlimb folding due to non-planar, multi-bend
faults can be modeled using simple kinematic models such
as layer parallel slip or inclined shear. This option is imple-
mented in my Trishear3D program.

Of the two existent algorithms to model trishear in three-di-
mensions, the pseudo-3D algorithm is the most efficient and
most versatile. The fact that the solution coordinate system
of the pseudo-3D algorithm is independent of the current ori-
entation of the tip line, makes the computation faster and al-
lows the introduction of more complex variations of trishear
parameters than the standard linear variation between the fault
tips. Although an ad-hoc implementation, the pseudo-3D algo-
rithm preserves volume within acceptable limits in all situa-
tions, even in the most exigent simulation such as lateral
fault propagation (Fig. 7). This conclusion is equally valid
for faults with slip perpendicular (this note), or oblique to
strike. The pseudo-3D algorithm is a fast and correct method
to model trishear in three-dimensions, and should be consid-
ered as a first option when dealing with inversion problems
(i.e. finding the trishear parameters that best fit a real structure),
which require the testing of thousands of trishear simulations.

A solution coordinate system that does not change in orien-
tation with deformation, such as in the pseudo-3D model, pro-
duces a very simple hanging wall geometry. Even in cases in
which the fault slip varies along strike, the elevation contours
of the hanging wall of a pseudo-3D model are parallel to the
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slip vector (the hanging wall is flat in cross sections parallel to
the slip vector, Figs. 4c, d and 6a). This may be an oversimpli-
fication. Analogue models of laterally propagating reverse
faults, show that the elevation contours of the hanging wall
are oblique to the slip vector (Fischer and Keating, 2005, their
Fig. 10). Outcrop observations of The Rip Van Winkle anti-
cline in New York (USA), a reverse fault propagation fold pro-
duced by a fault with suspected variation of slip along strike,
show a backlimb that dips away from the anticlinal hinge area
in sections parallel to the slip vector (Cardozo et al., 2005).
These observations are better reproduced by the true-3D for-
mulation. In this formulation, the solution coordinate system
progressively rotates and follows the orientation of the tip
line, resulting in a more complex hanging wall geometry
and, in the case of variable slip models, a fold backlimb that
dips away from the anticlinal hinge area (Figs. 4c, d and 6b, c).

The true-3D algorithm, however, produces volume changes
in simulations with variable slip along strike. These volume
changes are significant in reverse fault simulations with high
slip gradient along strike and high obliquity of the tip line
with respect to the slip vector and/or the fault strike, such as lat-
eral fault propagation (Fig. 7). Volume changes in the true-3D
algorithm are explained by mathematical inconsistencies in
both the triangular zone of shear and the hanging wall area
above it. These inconsistencies become evident when Az

0
(Eq.

(17)) is not zero (Section 2). Volume changes due to inconsis-
tencies inside the triangular zone, can be assessed by comparing
true-3D models in which the Az

0
term in y of Eq. (22) is consid-

ered (at least partially correct in the hanging wall area of the
triangular zone), or not. True-3D, reverse fault, variable slip
models that consider the Az

0
term in y (Figs. 4c and 6b) have

about 30% less volumetric change than corresponding true-
3D models that do not consider the Az

0
term in y (Figs. 4d

and 6c, Fig. 7). This suggests that the mathematical inconsis-
tencies inside the triangular zone account for about 30% of
the total volume change. It also suggests that, in terms of vol-
ume conservation, it is better to consider the Az

0
term in y (Eqs.

(22) and (23), Cristallini et al., 2004). Nonetheless, true-3D
models that consider the Az

0
term in y are incompatible at the

lower boundary of the triangular zone (Section 2), and produce
extreme upward deformation in the footwall area away from the
fold (Fig. 6b). In my opinion, not considering the Az

0
term in y

(Eqs. (24) and (25)) is the best way to deal with the inconsis-
tencies of the true-3D model inside the triangular zone of shear.

That volume changes in the hanging wall area above the tri-
angular zone account for a considerable percent (about 70%) of
the total volume change in variable slip, true-3D models, can be
seen in Fig. 8. This figure shows the dilation of the reverse, lat-
eral fault propagation model of Fig. 6 for the pseudo-3D
(Fig. 8a), true-3D using Eqs. (22) and (23) (Fig. 8b), and true-
3D using Eqs. (24) and (25) (Fig. 8c) simulations. The dilation
(i.e. finite strain) was computed using the initial and final geom-
etry of tetrahedrons embedded in the layer. The computation is
described in detail by Williams and Kane (1999). In the pseudo-
3D model, negative dilation is confined to a small area in the
forelimb, while in the rest of the structure there is no dilation
(Fig. 8a). To the contrary, in the true-3D models the dilation
in the hanging wall is considerable. It is positive and larger
than the dilation in the forelimb and footwall areas (Fig. 8b,
c). Volume changes in the hanging wall of the true-3D models
are larger than those of the forelimb and footwall areas. In these
areas, the dilation is higher in the true-3D model using Eqs. (24)
and (25) (Fig. 8c), than in the true-3D model using Eqs. (22) and
(23) where the dilation approaches zero (Fig. 8b). This explains
why variable slip, true-3D models using Eqs. (22) and (23) yield
less volume change than corresponding true-3D models using
Eqs. (24) and (25).

Volume changes such as those predicted by the true-3D
models of Fig. 8b, c may occur in nature under high slip obliquity
and slip gradients, for example during strike slip faulting. In
nature, these volume changes are resolved by subordinate folding
and faulting, differential compaction, and dissolution; processes
that are not included in the pseudo-3D or true-3D formulations.

This note examines the implementation and mathematical
consistency of the existent trishear 3D formulations. A more
fundamental question is how these formulations compare to
reality. Implementing efficient inverse 3D trishear modeling
strategies to fit real structures, and comparing the predicted
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geometries and strain fields of 3D trishear models with the
geometries, distribution of mesostructures (i.e. fractures),
and petrophysical properties of faulted and folded reservoirs,
are important topics for future research.
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