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Néstor Cardozo

Center for Integrated Petroleum Research, Allegaten 41, N-5007 Bergen, Norway

Received 16 December 2003; received in revised form 11 October 2004; accepted 11 October 2004

Available online 29 January 2005

Abstract

This paper describes an algorithm that extends the use of the trishear kinematic model to the commonly encountered case of a set of fold

bedding observations along a profile. In a universe of trishear models that can possibly fit the structure, the algorithm searches for the model

that minimizes the difference between observed and modeled beds (i.e. best fit model). The robustness and versatility of the algorithm are

shown by applying it to a synthetic fold geometry, and to a transect of the Waterpocket monocline in southern Utah. In the first case, the best

fit parameters are exactly those used in the synthetic model. In the second case, the best fit model reproduces fairly well the observable

features of the monocline.

q 2005 Published by Elsevier Ltd.
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1. Introduction

Complete cross-sectional exposures or seismic images of

fault propagation folds are rare. Commonly the data

available for the folds are restricted to a narrow window

close to the ground surface (a profile). In this window the

data consist of a collection of bedding attitudes at different

stratigraphic levels. One would like to reconstruct from

these data locations the cross-sectional geometry of the fold

and relate this geometry to the associated fault.

The flexural slip, kink dominated kinematic model

(Suppe and Medwedeff, 1990) is ideal to perform this

task: self-similarity (always the same fold shape and

position relative to the propagating fault tip) and kink

band migration provide a set of rules to graphically ‘fill’ the

space below the profile.

Fault propagation folds, however, commonly depart from

the self-similar, kink band picture. The folds usually display

changes in stratigraphic thickness and dip on their

forelimbs, footwall synclines, and both rounded and angular

fold hinges. Fold geometries change with structural level

and proximity to the fault tip.

The trishear kinematic model (Erslev, 1991) can better
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explain these features. In trishear, folding develops

incrementally in a triangular zone of distributed shear that

expands ahead of the propagating fault tip. Complex fold

geometries and strain fields result from a combination of

five model parameters: ramp angle, apical angle of the

triangular zone of shear (trishear angle), fault slip, fault

propagation to fault slip ratio (P/S), and location of the fault

tip (Allmendinger, 1998). Trishear, however, presents a

fundamental problem in the modeling of real structures. The

model must be applied numerically rather than graphically.

Knowledge of the current fold geometry relies on knowl-

edge of the incremental evolution of the fold.

Allmendinger (1998) devised an ingenious solution to

this problem. Taking advantage of the fact that trishear can

be run backwards (inverse modeling), he implemented an

algorithm that inverts for the combination of trishear

parameters that best ‘restore’ one bed in the section to its

original planar orientation. The success of his method

depends on the geologist having good control of at least one

bed across the entire fold. This condition, unfortunately, is

rarely achieved.

This paper describes an algorithm that extends the

capabilities of trishear modeling to the frequently encoun-

tered case of a set of beds outcropping along a topographic

profile. The robustness of the algorithm is tested by applying

it to a forward trishear model generated with precisely
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known trishear parameters. The versatility of the algorithm

is then demonstrated by applying it to the Waterpocket

monocline in southern Utah.
2. Method

The algorithm relies on a forward modeling approach.

The basic question posed in this problem is: given bedding

data from a series of observations along a profile, how can

one choose from a universe of forward trishear models (i.e.

universe of fold geometries), the model (i.e. set of folded

beds) that is most consistent with the data? The algorithm

uses the following strategy to answer this question:
1.
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For a given trishear model in the studied universe (gray

dashed lines, Fig. 1), measure the difference between the

observed (black ticks, Fig. 1) and the modeled (gray

ticks, Fig. 1) beds at all data locations along the profile

(iZ1,.,n). The algorithm uses two criteria to evaluate

this difference: bedding dip (q) and bedding location (x,

y; Fig. 1).
2.
 Create a summary (overall) statistic that shows the total

difference in bedding dip and location between the data

observed and the predicted model. The algorithm uses a

chi-square statistic (Press et al., 1986) to compute the

total difference:
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where the subscripts o and m stand for observed and

modeled, respectively (Fig. 1).
3.
 Repeat steps 1 and 2 for all trishear models in the

universe.
 

. 1. Elements of the strategy used to fit trishear models to bedding data along a

hed lines), differences in bedding dip (q) and bedding location (x, y) between the

-square statistic (enclosed equation). This procedure is repeated for all trishear m

are.
4.
 Choose the trishear model that minimizes the total

difference in bedding dip and location, producing the

lowest difference achievable by any trishear model in

the universe. The algorithm chooses the model with the

minimum chi-square value.

The algorithm requires the input of (Fig. 1): (i) the

coordinates of the points used to digitize the profile, (ii) the

location of bedding observations along the profile (xoi, yoi),

(iii) bedding dips (qoi), (iv) the horizontal location at which

the undeformed stratigraphy (the stratigraphy outside the

fold) is defined (xs), and (v) the vertical coordinate (yui) and

regional dip (qui) of the beds in the area outside the fold. The

last three parameters define the undeformed layer template

(the initial layer cake geometry). If xs is in the footwall area,

the undeformed layer template is the same for all tested

trishear models. If xs is in the hanging wall area, the

coordinates of the layer template (xui, yui) are updated for

each trishear model:

xuiðupdatedÞ Z xuiðinputÞ KscosðaÞ (2)

yuiðupdatedÞ Z yuiðinputÞ KssinðaÞ (3)

where s and a are the fault slip and ramp angle of the

currently tested trishear model.

The user should also specify the extent of the universe by

entering a grid search matrix consisting of the minimum

value, the maximum value, and the step increment of: (i)

horizontal coordinate of the fault tip (xt), (ii) vertical

coordinate of the fault tip (yt), (iii) ramp angle, (iv) P/S ratio,

(v) trishear angle, and (vi) fault slip. The algorithm then

searches over the specified range of values for the trishear

model that best fits the transect data. The statistics of the

grid search and the best-fit model are delivered to a text file.

Either homogenous or heterogeneous trishear (Zehnder and

Allmendinger, 2000) can be implemented. For simplicity,

only homogeneous trishear is considered in this paper.
topographic profile. For a given trishear model in the studied universe (gray

actual (black ticks) and the modeled (gray ticks) beds are computed using a

odels in the universe. The best trishear model is the one that minimizes chi-
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3. Test of the algorithm

A simple trishear forward model was used to test the

robustness of the algorithm along an arbitrary profile (Fig.

2). The first objective of this exercise is to see if the best-fit

model parameters identified by the algorithm (i.e. grid

search) are the same as the parameters input to the forward

model. The second objective of this test is to see if the best-

fit solution is unique, or if there are local minima in the grid

search space that could be mistaken for the global

minimum. Modeling a synthetic fold geometry generated

with known parameters might seem circular, but in fact it is

the only test for which one can evaluate with 100%

confidence the success of the algorithm. Actual fold cases

will always have errors (observations, measurements,

interpretations, etc.), but synthetic folds do not.

The locations of input data are highlighted in gray in Fig.

2. Notice that the stratigraphy in this exercise is defined in

the footwall area outside the fold. The ramp angle and the

fault tip location are assumed to be known. Hence, the

algorithm searches for the best-fit model over a reasonable

range of P/S ratio, trishear angle, and fault slip. The table in

Fig. 2 lists the grid search matrix; 35301 unique combi-

nations were tested. This yields a three-dimensional (3-D)

matrix of chi-square values, with dimensions of fault slip,

trishear angle, and P/S ratio.

Two-dimensional slices through the 3-D matrix of chi-

square values illustrate the effectiveness of the grid search
 

Fig. 2. Forward trishear model used to test the algorithm. The areas of input data ar

grid search. The parameters included in the search are: (i) P/S ratio, (ii) trishear a

close the computed best-fit parameters are to those input to the forward model.
(Fig. 3). The best-fit parameters are exactly those used in the

forward model, and there are no local minima in the grid

search space. Fig. 3a shows that P/S ratio and trishear angle

are inversely correlated (as also noted in Allmendinger

et al., 2004). At the best slip value, the bedding data can be

fit with a low P/S ratio and high trishear angle or vice versa.

This correlation is characteristic of the grid search (grid

searches along flat, left sloping, right sloping, concave

downward, and concave upward profiles all display the

same statistical trend). Fig. 3b and c shows that the solution

for the best slip is not very well constrained. At the correct

values of P/S ratio and trishear angle, the transect data can

be fit by a range of slip values G20 units of the correct slip.

This results because all the bedding intersections in this

example lie inside the fold (Fig. 2). In contrast, grid searches

along profiles that cross beds in the hanging wall and/or

footwall areas outside the fold have robust solutions for slip.

In these cases, finding the best-fit slip requires nothing more

than determining the correct throw (Allmendinger et al.,

2004). In general, the success of the search relies on the

completeness of coverage of the structure along the transect,

the number of bedding observations, and the step size of the

parameters included in the search. More demanding

searches were also conducted for unknown ramp angle

and fault tip location. In these cases, the best fit parameters

were exactly or close to those used in the forward model,

depending on the step increments in ramp angle and x and y

fault tip locations.
  

e highlighted in gray. The table below shows the range of values used in the

ngle, and (iii) fault slip. The success of the grid search is indicated by how



Fig. 3. Two-dimensional slices through the 3-D matrix of chi-square values produced by grid searching over the range of values shown in Fig. 2. Slices are

constructed at (a) best displacement (200 units), (b) best trishear angle (608), and (c) best P/S ratio (1.5). In each diagram, contours are in intervals of two chi-

square values.

N. Cardozo / Journal of Structural Geology 27 (2005) 495–502498
4. Application

The application of the algorithm is shown by modeling a

previously published transect of the Waterpocket monocline

in southern Utah (Bump, 2003; Fig. 4a and b). The

Waterpocket monocline forms the eastern limb of the Circle

Cliffs uplift. The fold extends along strike for more than

50 km. Across strike, the wavelength of the fold (the

horizontal distance between the flat lying hanging wall and

the flat lying footwall) is about 8 km (Davis, 1999; Fig. 4a

and b). The surface exposure of the monocline is excellent,
and therefore its surface geometry is very well constrained

(Fig. 4b). The subsurface structure and the geometry of the

underlying fault, however, are unknown. The monocline is

an ideal case for applying the algorithm.

The footwall area outside the fold is used to define the

‘undeformed’ stratigraphy (Fig. 4b). Fig. 4c shows the

parameter ranges used in the grid search. All six parameters,

fault tip location, ramp angle, P/S ratio, trishear angle, and

slip, were searched (the dashed rectangle in Fig. 4b indicates

the area where the location of the fault tip was searched).

96525 unique combinations were tested.



Fig. 4. (a) Location of the Waterpocket and San Rafael monoclines, simplified from Davis (1999). Lines with arrows show the upper hinge of the monoclines. Arrows show the vergence of the monoclines. Gray

area indicates the location of the transect. (b) Transect data of the Waterpocket monocline from Bump (2003). Elevations are in meters above sea level and the transect is drawn without vertical exaggeration. The

stratigraphy on each side of the transect is based on well logs and projection from the surface. The dashed rectangle in the cross-section shows the area where the location of the fault tip was searched. (c) Grid

search matrix used to find the trishear model that best fits the transect data of the Waterpocket monocline.
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The best model fits very well the transect data, and

reasonably well the stratigraphy in the hanging wall and

footwall areas outside the fold (Fig. 5a). The best model has

a ramp angle of 358, a P/S of 2.25, a trishear angle of 1058,

and fault slip of 3.8 km (Fig. 5a and b). Two-dimensional

slices at the best fault tip location and ramp angle show that

the solution is better constrained in P/S ratio than in trishear

angle (Fig. 5b, left), and that the solution for the best slip is

very robust (Fig. 5b, center and right). This is because the

Kaibab limestone (Pk)–Moenkopi Formation (TRm) contact

outcrops both in the forelimb and in the hanging wall area

outside the fold (Fig. 4b). Only in models with slip values
Fig. 5. (a) Best fit trishear model of the Waterpocket monocline. (b) Summary of th

best location of the fault tip and best ramp angle (358). The left slice is drawn at t

angle (1058), and the right slice is drawn at the best P/S ratio (2.25). In each plot

models with chi-square values less than 10.
between 3.6 and 3.8 km is this contact intersected twice by

the profile (Fig. 5a and b).

Refined searches for ramp angle (holding constant the

fault tip location), or P/S ratio and trishear angle (holding

constant the fault tip location and the ramp angle) lead to

minor variations in parameter values. A trishear model that

fits the Waterpocket monocline must have a ramp angle of

about 358, a P/S ratio between 2.2 and 2.3, a high trishear

angle (between 1008 and 1108), and fault slip of about

3.8 km. Trishear modeling of the Waterpocket monocline

transect data therefore suggests that the fault started to

propagate well below the basement-cover contact (the initial
e statistics of the grid search. Two-dimensional slices are constructed at the

he best displacement (3800 m), the center slice is drawn at the best trishear

, contours are in intervals of five chi-square values. Gray areas indicate the
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location of the fault tip must be at least 3.5 km below the

basement-cover contact in the hanging wall). Bump (2003)

arrived at a similar conclusion (for the Waterpocket and San

Rafael monoclines; Fig. 4a) using a preliminary (and more

restricted) version of my unpublished algorithm. Based on

this conclusion, he postulated that some of the faults that

underlie the Laramide uplifts originated as footwall short-

cuts of reactivated listric normal faults (Bump, 2003).

The best fit model (Fig. 5) matches fairly well the

observable features of the Waterpocket monocline. There is

little change in layer thickness from the upper backlimb

(borehole data), through the middle limb (exposed section),

into the flat lying lower limb (borehole data; Bump, 2001).

Most of the thickness changes occur in the immediate

footwall of the fault. A plausible, yet untested alternative

interpretation of the Waterpocket monocline is that it is a
Fig. A1. Graphical represent
parallel fold. The purpose of this exercise, however, is not to

discuss the ultimate origin of the Waterpocket monocline,

but rather to illustrate the application of the algorithm to a

real structure.
5. Conclusions

In this note, a simple yet powerful algorithm has been

presented to fit trishear models to bedding data along a

topographic profile. The application of the algorithm to both

synthetic and actual transect data shows that the algorithm is

robust and reliable. The algorithm significantly extends the

applicability of the trishear model. The subsurface geometry

of the fold and its accompanying fault, the amount of fault

slip and fault propagation, and the position of fault
ation of the algorithm.
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nucleation; can all now be extracted from a set of scattered

observations along a very restricted window in the structure.

This type of information is critical in the evaluation of the

seismic hazard posed by buried, active faults (Keller and

Pinter, 2002), and in the assessment of the geometry

and internal structure of petroleum reservoirs (Erslev and

Mayborn, 1997).
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Appendix A

Fig. A1 describes the implementation of the algorithm.

The algorithm consists of six nested loops (each one

corresponding to a grid search parameter). The main

calculations are inside the loop for slip values. The

calculation of trishear deformation is based on the

homogeneous trishear velocity field of Zehnder and

Allmendinger (2000, their equation 6). The strategy to

determine the intersections of the modeled beds with the

topographic profile is based on the Bourke (1989) algorithm.
A straight insertion algorithm (Press et al., 1986) was used

to sort the actual and modeled bedding intersections for

comparison. The statistic that summarizes the differences

between the actual and modeled beds (Eq. (1)) is based on

Press et al. (1986).
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