
Paxos Explained from Scratch

Hein Meling and Leander Jehl

hein.meling@uis.no

International Conference On Principles of Distributed Systems

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 1 / 92



What is Paxos and why is it Relevant?

Fault tolerant consensus protocol

Used to order client requests in a fault tolerant server
For example a fault tolerant resource manager

Used in production systems: Chubby, ZooKeeper, and Spanner
It is always safe

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 2 / 92



What is Paxos and why is it Relevant?

Fault tolerant consensus protocol
Used to order client requests in a fault tolerant server

For example a fault tolerant resource manager

Used in production systems: Chubby, ZooKeeper, and Spanner
It is always safe

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 2 / 92



What is Paxos and why is it Relevant?

Fault tolerant consensus protocol
Used to order client requests in a fault tolerant server

For example a fault tolerant resource manager
Used in production systems: Chubby, ZooKeeper, and Spanner

It is always safe

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 2 / 92



What is Paxos and why is it Relevant?

Fault tolerant consensus protocol
Used to order client requests in a fault tolerant server

For example a fault tolerant resource manager
Used in production systems: Chubby, ZooKeeper, and Spanner
It is always safe

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 2 / 92



Objectives and Approach

Explain Paxos
Using visual aids
In a step-wise manner
With minimal changes in each step

Objective
Understand why it works and why the solution is necessary
(no focus on how to implement or formally prove it)

Approach
Use a simple client/server system as base
To build fault tolerant server (replicated state machine)
Construct Multi-Paxos
Decompose Multi-Paxos into Paxos

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 3 / 92



Objectives and Approach

Explain Paxos
Using visual aids
In a step-wise manner
With minimal changes in each step

Objective
Understand why it works and why the solution is necessary
(no focus on how to implement or formally prove it)

Approach
Use a simple client/server system as base
To build fault tolerant server (replicated state machine)
Construct Multi-Paxos
Decompose Multi-Paxos into Paxos

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 3 / 92



Objectives and Approach

Explain Paxos
Using visual aids
In a step-wise manner
With minimal changes in each step

Objective
Understand why it works and why the solution is necessary
(no focus on how to implement or formally prove it)

Approach
Use a simple client/server system as base
To build fault tolerant server (replicated state machine)
Construct Multi-Paxos
Decompose Multi-Paxos into Paxos

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 3 / 92



A Stateful Service: SingleServer

C2

S1

C1

〈m2〉

m2

〈m1〉

m1

〈σ2
1〉

〈σ21
1 〉

Client C2 sees: σ2

Client C1 sees: σ21

Corresponds to execution
sequence: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 4 / 92



A Stateful Service: SingleServer

C2

S1

C1

〈m2〉

m2

〈m1〉

m1

〈σ2
1〉

〈σ21
1 〉

Client C2 sees: σ2

Client C1 sees: σ21

Corresponds to execution
sequence: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 4 / 92



We Want to Make the Service
Fault Tolerant!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 5 / 92



Fault Tolerance with Two Servers

C2

S2

S1

C1

〈m2〉

m2

m2

〈σ2
2〉〈σ2

1〉

〈m1〉

m1

m1

〈σ21
1 〉〈σ21

2 〉

Client C2 sees: σ2

Client C1 sees: σ21

σ2 is a prefix of σ21

Corresponds to execution
sequence: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 6 / 92



Fault Tolerance with Two Servers

C2

S2

S1

C1

〈m2〉

m2

m2

〈σ2
2〉〈σ2

1〉

〈m1〉

m1

m1

〈σ21
1 〉〈σ21

2 〉

Client C2 sees: σ2

Client C1 sees: σ21

σ2 is a prefix of σ21

Corresponds to execution
sequence: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 6 / 92



Deterministic State Machine

The service is implemented as a deterministic state machine
Thus processing requests results in unique state transitions:

Therefore σ2
1=σ2

2 and σ21
1 =σ21

2 .
Clients can detect and suppress identical replies

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 7 / 92



Fault Tolerance with Two Servers: Whoops!

C2

S2

S1

C1
〈m1〉

m1

〈σ1
1〉

m1

〈σ21
2 〉

〈m2〉

m2

m2

〈σ2
2〉 〈σ12

1 〉

Client C2 sees: σ2σ12

σ2 is not a prefix of σ12

Client C1 sees: σ1σ21

σ1 is not a prefix of σ21

Corresponds to execution
sequence at

S1: m1m2
S2: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 8 / 92



Fault Tolerance with Two Servers: Whoops!

C2

S2

S1

C1
〈m1〉

m1

〈σ1
1〉

m1

〈σ21
2 〉

〈m2〉

m2

m2

〈σ2
2〉 〈σ12

1 〉

Client C2 sees: σ2σ12

σ2 is not a prefix of σ12

Client C1 sees: σ1σ21

σ1 is not a prefix of σ21

Corresponds to execution
sequence at

S1: m1m2
S2: m2m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 8 / 92



We Need to Order Client Requests!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 9 / 92



Let’s Designate a Leader to Order Requests

C2

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m2〉

m2

m2

〈σ2
1〉〈σ2

2〉

〈Acc,m1〉

m1

m1

〈σ21
1 〉〈σ21

2 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 10 / 92



Without Clients

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2〉

m2

m2

〈Acc,m1〉

m1

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 11 / 92



Problem: Also Accept Messages can be Reordered

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2〉

m2

m2

〈Acc,m1〉

m1

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 12 / 92



Add Sequence Numbers

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2, 1〉

m2

m2

〈Acc,m1, 2〉

m1

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 13 / 92



Discard Out-of-Order Messages

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2, 1〉

m2

m2

〈Acc,m1, 2〉

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 14 / 92



Now with Clients

C2

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m2, 1〉

m2

m2

〈σ2
1〉 〈σ2

2〉

〈Acc,m1, 2〉

m1

〈σ21
1 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 15 / 92



Clients Observe The Same Server States as Before

Client C2 sees: σ2

Client C1 sees: σ21

However, S2 didn’t execute m1
Q: What to do?

A1: Buffer
A2: Retransmission mechanism

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 16 / 92



Clients Observe The Same Server States as Before

Client C2 sees: σ2

Client C1 sees: σ21

However, S2 didn’t execute m1
Q: What to do?
A1: Buffer

A2: Retransmission mechanism

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 16 / 92



Clients Observe The Same Server States as Before

Client C2 sees: σ2

Client C1 sees: σ21

However, S2 didn’t execute m1
Q: What to do?
A1: Buffer
A2: Retransmission mechanism

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 16 / 92



Problem: Message Loss – S2 Won’t Execute Anything

C2

S2

S1
Leader

C1

〈Acc,m2, 1〉

m2

〈Acc,m1, 2〉

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 17 / 92



We Need a Retransmission
Mechanism!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 18 / 92



A Learn Stops Retransmission

C2

S2

S1
Leader

C1

〈Acc,m2, 1〉

m2

Retransmit
〈Acc,m2, 1〉

〈Lrn,m2〉m2

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 19 / 92



Don’t Send New Accept Until Learn

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2, 1〉

m2

Retransmit
〈Acc,m2, 1〉

〈Lrn,m2〉m2

〈Acc,m1, 2〉

m1

〈Lrn,m1〉m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 20 / 92



With Clients

C2

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m2, 1〉

m2

〈σ2
1〉

Retransmit
〈Acc,m2, 1〉

〈Lrn,m2〉m2

〈σ2
2〉

〈Acc,m1, 2〉

m1

〈σ21
1 〉

〈Lrn,m1〉m1

〈σ21
2 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 21 / 92



Recap

A leader
To decide the order of client requests
By sending an accept message to S2

Sequence numbers
To cope with message reordering

Retransmission mechanism
To cope with message loss
Leader only sends next accept when learn from S2
Allows leader to make progress, as long as messages are not lost
infinitely often

Combination of mechanisms:
RetransAccept protocol

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 22 / 92



Recap

A leader
To decide the order of client requests
By sending an accept message to S2

Sequence numbers
To cope with message reordering

Retransmission mechanism
To cope with message loss
Leader only sends next accept when learn from S2
Allows leader to make progress, as long as messages are not lost
infinitely often

Combination of mechanisms:
RetransAccept protocol

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 22 / 92



Recap

A leader
To decide the order of client requests
By sending an accept message to S2

Sequence numbers
To cope with message reordering

Retransmission mechanism
To cope with message loss
Leader only sends next accept when learn from S2
Allows leader to make progress, as long as messages are not lost
infinitely often

Combination of mechanisms:
RetransAccept protocol

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 22 / 92



Recap

A leader
To decide the order of client requests
By sending an accept message to S2

Sequence numbers
To cope with message reordering

Retransmission mechanism
To cope with message loss
Leader only sends next accept when learn from S2
Allows leader to make progress, as long as messages are not lost
infinitely often

Combination of mechanisms:
RetransAccept protocol

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 22 / 92



What About Server Crashes?

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 23 / 92



Crash

C2

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

m1

m1

〈σ1
1〉〈σ1

2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 24 / 92



Crash: Leader Takeover

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

m1

m1

〈σ1
1〉〈σ1

2〉

m2

〈σ12
2 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 25 / 92



Single Server Rule: Case 1

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

m2

〈σ2
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 26 / 92



Single Server Rule: Case 2

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

m2

〈σ2
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 27 / 92



Single Server Rule: Case 3

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

m1

m2

〈σ2
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 28 / 92



Single Server Rule: Case 4 – A Problem

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

m1

〈σ1
1〉

m2

〈σ2
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 29 / 92



Single Server Rule: Case 4 – A Problem

Imagine that (S1, S2) implements a fault tolerant resource manager,
e.g. a lock service
Both clients could have gotten the lock

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 30 / 92



Solution: Leader Waits for Learn Before Executing

C2

S2

S1
Leader

C1

〈Acc,m1, 1〉 〈Acc,m1, 1〉

Retransmit

〈Lrn,m1〉

m1

m1

〈Acc,m2, 2〉

〈Lrn,m2〉

m2

m2

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 31 / 92



Recall Earlier Version

C2

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m2, 1〉

m2

Retransmit
〈Acc,m2, 1〉

〈Lrn,m2〉m2

〈Acc,m1, 2〉

m1

〈Lrn,m1〉m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 32 / 92



Now Leader Takeover is Safe

C2

S2
Leader

S1
Leader

C1

〈Acc,m1, 1〉 〈Acc,m1, 1〉

Retransmit

〈Lrn,m1〉

m1

m1 m2

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 33 / 92



Let’s Add Client Messages

C2

S2
Leader

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉 〈Acc,m1, 1〉

Retransmit

〈Lrn,m1〉

m1

m1

〈σ1
1〉〈σ1

2〉

m2

〈σ12
2 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 34 / 92



Leader Remain in Control when S2 Crash

C2

S2

S1
Leader

C1

〈Acc,m1, 1〉 〈Acc,m1, 1〉

Retransmit

〈Lrn,m1〉

m1

m1

Detected
m2

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 35 / 92



Let’s Add Client Messages Again

C2

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉 〈Acc,m1, 1〉

Retransmit

〈Lrn,m1〉

m1

m1

〈σ1
1〉〈σ1

2〉

Detected
m2

〈σ12
1 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 36 / 92



Recap: The Problem

When we detect a server crash
Adopt the SingleServer protocol

Problem with our RetransAccept protocol:
The leader might have replied to a client and then crashed, without
ensuring that S2 saw the accept
S2 takes over and may execute a different request in SingleServer mode

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 37 / 92



Recap: The Problem

When we detect a server crash
Adopt the SingleServer protocol

Problem with our RetransAccept protocol:
The leader might have replied to a client and then crashed, without
ensuring that S2 saw the accept
S2 takes over and may execute a different request in SingleServer mode

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 37 / 92



Recap: WaitForLearn Protocol

The leader always waits for a learn message from S2
Think of it as an acknowledgement

S2 can execute after seeing an accept from the leader
This is because the accept message is also an implicit learn

Q: What happens if the learn message to the leader is lost?
A: The leader uses RetransAccept; the accept will be retransmitted.
So no need for another retransmit protocol.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 38 / 92



Recap: WaitForLearn Protocol

The leader always waits for a learn message from S2
Think of it as an acknowledgement

S2 can execute after seeing an accept from the leader
This is because the accept message is also an implicit learn

Q: What happens if the learn message to the leader is lost?
A: The leader uses RetransAccept; the accept will be retransmitted.
So no need for another retransmit protocol.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 38 / 92



Recap: WaitForLearn Protocol

The leader always waits for a learn message from S2
Think of it as an acknowledgement

S2 can execute after seeing an accept from the leader
This is because the accept message is also an implicit learn

Q: What happens if the learn message to the leader is lost?

A: The leader uses RetransAccept; the accept will be retransmitted.
So no need for another retransmit protocol.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 38 / 92



Recap: WaitForLearn Protocol

The leader always waits for a learn message from S2
Think of it as an acknowledgement

S2 can execute after seeing an accept from the leader
This is because the accept message is also an implicit learn

Q: What happens if the learn message to the leader is lost?
A: The leader uses RetransAccept; the accept will be retransmitted.
So no need for another retransmit protocol.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 38 / 92



Somewhat Rougher Road Ahead!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 39 / 92



False Detection

So far we have assumed that failure detection is accurate

But in an asynchronous environment
There is always a chance of false detection
Because it is impossible to pick the right timeout delay

We now consider false detection in the context of network partitions

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 40 / 92



False Detection

So far we have assumed that failure detection is accurate
But in an asynchronous environment

There is always a chance of false detection
Because it is impossible to pick the right timeout delay

We now consider false detection in the context of network partitions

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 40 / 92



False Detection

So far we have assumed that failure detection is accurate
But in an asynchronous environment

There is always a chance of false detection
Because it is impossible to pick the right timeout delay

We now consider false detection in the context of network partitions

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 40 / 92



Problem: Network Partitions

C2

S2
Leader

Partition

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

Retransmit

〈Acc,m1, 1〉

Detection

Detection

m1

m2

〈σ1
1〉

〈σ2
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 41 / 92



Network Partition

Each server can switch to SingleServer mode (no coordination) and
make progress

But it will lead to inconsistencies
S1 has state σ1

S2 has state σ2

Reconciling the state divergence
Involves rollback on multiple clients

Quickly becomes unmanageable

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 42 / 92



Network Partition

Each server can switch to SingleServer mode (no coordination) and
make progress
But it will lead to inconsistencies

S1 has state σ1

S2 has state σ2

Reconciling the state divergence
Involves rollback on multiple clients

Quickly becomes unmanageable

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 42 / 92



Network Partition

Each server can switch to SingleServer mode (no coordination) and
make progress
But it will lead to inconsistencies

S1 has state σ1

S2 has state σ2

Reconciling the state divergence
Involves rollback on multiple clients

Quickly becomes unmanageable

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 42 / 92



Network Partition

Each server can switch to SingleServer mode (no coordination) and
make progress
But it will lead to inconsistencies

S1 has state σ1

S2 has state σ2

Reconciling the state divergence
Involves rollback on multiple clients
Quickly becomes unmanageable

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 42 / 92



We Want to Avoid Relying on
Clients!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 43 / 92



Add Another Server; Make Progress in Majority Partition

C2

S3

Partition

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

〈Lrn,m1〉

m1

m1

Non-majority

〈σ1
1〉〈σ1

2〉

〈Acc,m2, 2〉

〈Lrn,m2〉

m2

m2

〈σ12
1 〉〈σ12

2 〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 44 / 92



New Leader in Majority Partition

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc,m1, 1〉

Retransmit

〈Acc,m1, 1〉

Detection

〈Acc,m2, 1〉

Retransmit

〈Acc,m1, 1〉

〈Lrn,m2〉

m2

m2

〈σ2
2〉〈σ2

3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 45 / 92



WaitForLearn Without Partition

C2

S3

S2

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m1, 1〉

〈Lrn,m1〉

m1

m1

〈Lrn,m1〉m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 46 / 92



WaitForLearn With Clients

C2

S3

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈σ1
3〉

〈σ2
3〉

〈Acc,m1, 1〉

〈Lrn,m1〉

m1

m1

〈Lrn,m1〉m1

〈σ1
1〉〈σ1

2〉〈σ1
3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 47 / 92



Recap: Network Partition

We added another server, S3
To avoid rollback using clients

We still use the WaitForLearn protocol
To ensure that another server has seen the accept message

Leader only needs to wait for one learn before executing the request
Allows the leader to make progress,
when another server has crashed or is temporarily unavailable

But we still only tolerate one concurrent failure
Either a crash or a network partition

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 48 / 92



Recap: Network Partition

We added another server, S3
To avoid rollback using clients

We still use the WaitForLearn protocol
To ensure that another server has seen the accept message

Leader only needs to wait for one learn before executing the request
Allows the leader to make progress,
when another server has crashed or is temporarily unavailable

But we still only tolerate one concurrent failure
Either a crash or a network partition

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 48 / 92



Recap: Network Partition

We added another server, S3
To avoid rollback using clients

We still use the WaitForLearn protocol
To ensure that another server has seen the accept message

Leader only needs to wait for one learn before executing the request
Allows the leader to make progress,
when another server has crashed or is temporarily unavailable

But we still only tolerate one concurrent failure
Either a crash or a network partition

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 48 / 92



Recap: Network Partition

We added another server, S3
To avoid rollback using clients

We still use the WaitForLearn protocol
To ensure that another server has seen the accept message

Leader only needs to wait for one learn before executing the request
Allows the leader to make progress,
when another server has crashed or is temporarily unavailable

But we still only tolerate one concurrent failure
Either a crash or a network partition

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 48 / 92



What can go Wrong:
Concurrent Crash and Partition

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 49 / 92



Concurrent Crash and Partition

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m1, 1〉

Timeout
〈Acc,m2, 1〉

?

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 50 / 92



Crash and Partition: Outcome 1 – m1 Executed

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m1, 1〉

Timeout
〈Acc,m2, 1〉

〈Lrn,m1〉m1

〈σ1
3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 51 / 92



Crash and Partition: Outcome 2 – m2 Executed

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m1, 1〉

Timeout
〈Acc,m2, 1〉

〈Lrn,m2〉m2

〈σ2
3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 52 / 92



Recap: Crash and Partition

S3 crashed
But it could have executed either m1 or m2
And replied to a client

Other servers cannot determine which message, if any, was executed

Maybe we could talk to clients?
We don’t want to rely on clients!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 53 / 92



Recap: Crash and Partition

S3 crashed
But it could have executed either m1 or m2
And replied to a client

Other servers cannot determine which message, if any, was executed

Maybe we could talk to clients?
We don’t want to rely on clients!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 53 / 92



Recap: Crash and Partition

S3 crashed
But it could have executed either m1 or m2
And replied to a client

Other servers cannot determine which message, if any, was executed
Maybe we could talk to clients?
We don’t want to rely on clients!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 53 / 92



Explicit Leader Change Mechanism

Above problem is rooted in possibility of false detection
Can lead to several servers thinking they are leaders
And sending accept messages concurrently

It can be solved by an explicit leader takeover protocol
We need a way to

Distinguish messages from different leaders
Change the leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 54 / 92



Explicit Leader Change Mechanism

Above problem is rooted in possibility of false detection
Can lead to several servers thinking they are leaders
And sending accept messages concurrently

It can be solved by an explicit leader takeover protocol

We need a way to
Distinguish messages from different leaders
Change the leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 54 / 92



Explicit Leader Change Mechanism

Above problem is rooted in possibility of false detection
Can lead to several servers thinking they are leaders
And sending accept messages concurrently

It can be solved by an explicit leader takeover protocol
We need a way to

Distinguish messages from different leaders
Change the leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 54 / 92



Explicit Leader Change

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 55 / 92



Leader Identifiers in Accept and Learn Messages

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉

〈Acc,S2,m2, 1〉

〈Lrn,S2,m2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 56 / 92



With Client Replies

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉

〈Acc,S2,m2, 1〉

〈Lrn,S2,m2〉

m2

m2

〈σ2
2〉〈σ2

3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 57 / 92



What Happens Now?

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 58 / 92



S3 Takes Over?

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉 〈Prep,S3〉

〈Prom,S3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 59 / 92



S1 Takes Over Again?

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep,S2〉

〈Prom,S2〉

〈Prep,S1〉

Ignored

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 60 / 92



Replace Leader Identifiers With Round Numbers

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

Timeout
〈Prep, 2〉

〈Prom, 2〉

〈Prep, 4〉

〈Prom, 4〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 61 / 92



Recap: Leader Change

Added round number rnd in messages
To identify the leader

〈Acc, rnd,m, seqno〉: Sent by leader of round rnd
〈Lrn, rnd,m〉: Sent to leader of round rnd

Round numbers are assigned:
S1: 1, 4, 7, . . .
S2: 2, 5, 8, . . .
S3: 3, 6, 9, . . .

Skipping rounds is possible
Added two new messages

〈Prep, rnd〉: Request to become leader for round rnd
〈Prom, rnd〉: Promise not to accept messages from a lower round
than rnd (i.e. an older leader)

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 62 / 92



Recap: Leader Change

Added round number rnd in messages
To identify the leader

〈Acc, rnd,m, seqno〉: Sent by leader of round rnd
〈Lrn, rnd,m〉: Sent to leader of round rnd

Round numbers are assigned:
S1: 1, 4, 7, . . .
S2: 2, 5, 8, . . .
S3: 3, 6, 9, . . .

Skipping rounds is possible

Added two new messages
〈Prep, rnd〉: Request to become leader for round rnd
〈Prom, rnd〉: Promise not to accept messages from a lower round
than rnd (i.e. an older leader)

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 62 / 92



Recap: Leader Change

Added round number rnd in messages
To identify the leader

〈Acc, rnd,m, seqno〉: Sent by leader of round rnd
〈Lrn, rnd,m〉: Sent to leader of round rnd

Round numbers are assigned:
S1: 1, 4, 7, . . .
S2: 2, 5, 8, . . .
S3: 3, 6, 9, . . .

Skipping rounds is possible
Added two new messages

〈Prep, rnd〉: Request to become leader for round rnd
〈Prom, rnd〉: Promise not to accept messages from a lower round
than rnd (i.e. an older leader)

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 62 / 92



Let’s Apply This Together
With Accept and Learn

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 63 / 92



S3 Ignores Accept Message From Old Leader

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

Timeout
〈Prep, 2〉

〈Prom, 2〉 Ignore

〈Acc, 2,m2, 1〉

〈Lrn, 2,m2〉

m2

m2

〈σ2
3〉 〈σ2

2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 64 / 92



Let’s Recall the Problem we are
Trying to Solve

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 65 / 92



We Don’t Know What S3 Did Before Crashing

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc,m1, 1〉

Timeout
〈Acc,m2, 1〉

?

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 66 / 92



Do We Know Now?

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

Timeout
〈Prep, 2〉

〈Prom, 2〉 Ignore

〈Acc, 2,m2, 1〉

〈Lrn, 2,m2〉 m2

〈σ2
3〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 67 / 92



No we don’t!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 68 / 92



But it is Safe to Continue
as If m2 Had Been Executed

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 69 / 92



What Happens If S3 Learn m1?

C2

S3

S2

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

Timeout

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 70 / 92



What Happens If S3 Learn m1?

C2

S3

S2

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

〈σ1
3〉

Timeout

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 71 / 92



Does Leader Change Help?

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

Timeout
〈Prep, 2〉

〈Prom, 2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 72 / 92



No!
We Still don’t Know What
S3 Did Before Crashing.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 73 / 92



But the fix is Easy!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 74 / 92



Tell new Leader About Accepted Messages

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

Timeout
〈Prep, 2〉

〈Prom, 2, (1,m1)〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 75 / 92



The new Leader Resends Accept for Those Messages

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

Timeout
〈Prep, 2〉

〈Prom, 2, (1,m1)〉

〈Acc, 2,m1, 1〉

〈Lrn, 2,m1〉 noop

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 76 / 92



Learn was Lost and S3 Crashed.
Leader Still can’t Execute m1.

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 77 / 92



Leader Also Resends Accept After Merge

C2

S3

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

Timeout
〈Prep, 2〉

〈Prom, 2, (1,m1)〉

〈Acc, 2,m1, 1〉

〈Lrn, 2,m1〉 noop

〈Acc, 2,m1, 1〉

〈Lrn, 2,m1〉

m1

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 78 / 92



Promise from old Leader Includes Accepted Messages

C2

S3
Leader

S2
Leader

Partition

S1
Leader

C1
〈σ1

3〉

〈σ2
3〉

〈Acc, 1,m1, 1〉

Timeout
〈Prep, 2〉

〈Prom, 2〉 〈Prep, 3〉

〈Prom, 3, (1,m1)〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 79 / 92



Recap: Leader Change 2

Added information about accept from previous leader:
〈Prom, rnd, (1,m1)〉

Promise not to accept messages from a lower round than rnd
Last leader did send m1 in round 1
Typical naming: 〈Prom, rnd, (vrnd, vval)〉

Leader resends accept for messages identified in the promise message
After receiving the promise
After a partition merge

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 80 / 92



Recap: Leader Change 2

Added information about accept from previous leader:
〈Prom, rnd, (1,m1)〉

Promise not to accept messages from a lower round than rnd
Last leader did send m1 in round 1
Typical naming: 〈Prom, rnd, (vrnd, vval)〉

Leader resends accept for messages identified in the promise message
After receiving the promise
After a partition merge

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 80 / 92



What About More Than one
Crash?

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 81 / 92



What About More Than one Crash?

Increase the number of servers
To limit progress to a majority partition:

We can only tolerate fewer than half of the servers fail
To tolerate f crashes, we need at least 2f + 1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 82 / 92



With Five Servers

C2

S5

S4

S3

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉

m1

m1

m1

m1

m1

〈σ1
1〉〈σ1

2〉〈σ1
3〉〈σ1

4〉〈σ1
5〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 83 / 92



With Five Servers, S2 Cannot Execute After Accept

C2

S5

S4

S3

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉 m1

〈σ1
2〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 84 / 92



With Five Servers, S2 Cannot Execute After Accept

A combination of message loss and crashes
Prevent non-leader servers from executing after receiving an accept

This was not necessary for the three server case
The accept from the leader is an implicit learn
And together with its own ”learn”, can execute!

There are two solutions:
Wait for all-to-all learn
Wait for commit from leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 85 / 92



With Five Servers, S2 Cannot Execute After Accept

A combination of message loss and crashes
Prevent non-leader servers from executing after receiving an accept
This was not necessary for the three server case

The accept from the leader is an implicit learn
And together with its own ”learn”, can execute!

There are two solutions:
Wait for all-to-all learn
Wait for commit from leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 85 / 92



With Five Servers, S2 Cannot Execute After Accept

A combination of message loss and crashes
Prevent non-leader servers from executing after receiving an accept
This was not necessary for the three server case

The accept from the leader is an implicit learn
And together with its own ”learn”, can execute!

There are two solutions:
Wait for all-to-all learn
Wait for commit from leader

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 85 / 92



All-to-All Learn Before Execute

C2

S5

S4

S3

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉

m1

m1

m1

m1

m1

〈σ1
1〉〈σ1

2〉〈σ1
3〉〈σ1

4〉〈σ1
5〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 86 / 92



Await Commit Before Execute

C2

S5

S4

S3

S2

S1
Leader

C1
〈m1〉

〈m2〉

〈Acc, 1,m1, 1〉

〈Lrn, 1,m1〉

m1

〈Cmt, 1,m1〉

m1

m1

m1

m1

〈σ1
1〉〈σ1

2〉〈σ1
3〉〈σ1

4〉〈σ1
5〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 87 / 92



Wrapping it up!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 88 / 92



Multi-Paxos

S3

S2

S1
〈Acc, 1,m2, 1〉

〈Lrn, 1,m2〉

m2

m2

m2

〈Acc, 1,m1, 2〉

〈Lrn, 1,m1〉

m1

m1

m1

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 89 / 92



Paxos

S3

S2

S1
〈Prep, 1〉

〈Prom, 1, (0,m)〉

〈Acc, 1,m, 1〉

〈Lrn, 1,m〉

m

m

m

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 90 / 92



Paxos

S3

S2

S1
〈Prep, rnd〉

〈Prom, rnd, (vrnd, vval)〉

〈Acc, rnd, val, ci〉

〈Lrn, rnd, val〉

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 91 / 92



Paxos Agents

Proposer = Leader
Sends prepare and accept messages
Receive promise messages

Acceptor
Receive accept messages
Sends learn messages

Learner
Receive learn messages

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 92 / 92



That’s It! Thank You!

Hein Meling (Univ. of Stavanger) Paxos Explained OPODIS ’13 93 / 92


