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Abstract—Advanced industrial robots usually consist of several
independent control systems. Particularly, robots that perform
process-intensive tasks like painting, gluing, and sealing have
dedicated process control systems that are more or less loosely
coupled with the motion control system. Testing the software
for such systems is challenging because physical systems are
necessary to test many of their characteristics.

This paper proposes a method for automated testing of
such robot systems. Our approach draws on previous work on
continuous integration, combined with constraint programming
techniques for test sequence generation. In ABB Robotics’ process
control system for robotized painting, many tests are only
conducted every six months, during the release test. With our
automated test approach, we expect to reduce the round-trip
time, from code change to test completion, to less than one day.

I. INTRODUCTION

There are many challenges in testing an integrated process
control system (IPS). One of the challenges is to verify that the
timing requirements of distributed operations are not violated.
An example from robotized painting is to ensure proper order
and timing of events on different nodes, e.g. when to open a
valve on one node, relative to starting a motor on another node.
Today, testing these issues is mainly done using manual, labor-
intensive methods. This implies that the time from a software
error is introduced, to the time that the error is discovered, can
be quite long, if found at all. It also implies that when an error
is reported, the developer(s) responsible for the erroneous code
can be in a different context, working on something else, and
thus it may take longer to resolve the problem.

By combining ideas from continuous integration (CI) [1]
with constraint programming for test sequence generation,
we can obtain significantly reduced round-trip time for many
sophisticated tests that are only performed prior to release.
We expect that these tests can be performed on daily basis,
instead of only during release testing, resulting in faster
error discovery. Through the development of a mathematical
constraint model, we aim to generate sequences of events for
driving the IPS into error states. Those error states are specified
using specific constraint expressions that are confronted with
a constraint model specifying the correct behavior of the IPS.
Interestingly, the constraint model is also used to produce
expected results of the IPS, that are used as test oracles.

II. PAINTING WITH A ROBOT

One of the key elements in robotized painting is the ability to
perform precise triggers along a programmed path, meaning
that the robot is able to turn on/off process equipment at
correct points along the path. Process equipment used for
painting include air and fluid (paint) control, valves, and other
physical objects. Many of the processes involved in painting,
are relatively slow compared to the movement of the robot
arm. One example is the time it takes to turn on/off an airflow,
which is in the range 100-200ms, due to filling/emptying
hoses of air. For this reason, the IPS must be informed in
advance about when to apply a specific process value. The
robot controller does that by predicting the time it reaches the
actual point where the spray pattern should be changed. This
predicted time is then sent to the IPS together with the process
value before reaching the point. Since the IPS receives both the
process value to apply, and the time at which the value should
be applied, the IPS can compensate for various process delays.
With tight synchronization between processes, this technique
makes it possible to inject precise triggers along a path, even
for slow processes like air control.

III. SYSTEM OVERVIEW

Figure 1 shows how our CI-based test system will be config-
ured. In a real deployment, the robot controller is connected
to the IPS master, while for running tests, the Test server
bypasses the robot controller, connecting directly to the IPS
master. All nodes in the network will be located at different
physical locations on the robot or in a control cabinet.

In a paint deployment, the robot controller initiates a change
in the spray pattern (brush) by sending a command to the IPS
approximately 200ms before the robot arm arrives at the point
where the new brush is to be applied. The command consists
of a time and a brush number, [¢,b], as shown in Figure 1.

Using a brush table', the IPS master can do a lookup(b)
to retrieve a list of process values to be applied for process
P;. The TIPS master may also adjust the time ¢ before each
time/process value pair is sent to the node which handles
the physical output. In Figure 1 this is shown as the [t;, P;]
message sent to Node 1. Internally on each node, the received

IThe brush table is a lookup table where the brush number b is the key.
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Fig. 1: IPS connection overview

[ti, P;] can be additionally modified, [t;, P;] — [t:, P, before
the final P; is added to a trigqueue to be executed at time ;.

IV. CONTINUOUS INTEGRATION

CI has since Fowler [1] introduced it become very popular in
the software development community. One example is Google,
who has the intention of building and performing tests on
every check-in to their source repository [2]. Inspired by
the ideas of CI, and the advanced capabilities offered by
constraint programming, we will build a full scale setup for
running CI tests on the IPS system. A schematic overview is
given in Figure 1. Note that the robot controller is replaced
by a Test server running the constrain model as part of
the test framework. In our setup we focus on testing the
process system, so we regard the messages sent from the robot
controller to be correct, and not part of the system under test.
That is, the messages sent from a robot controller in a real
deployment, is replaced by messages generated by our test
framework running on the Test server.

V. CONSTRAINT MODEL

Constraint Programming (CP) is a well-known paradigm intro-
duced twenty years ago to solve combinatorial problems in an
efficient and flexible way. Typically, a CP model is composed
of a set of variables V, a set of domains D and a set of
constraints C'. The goal of constraint resolution is to find a
solution, i.e., an assignment of variables to values that belong
to the domains and satisfy all the constraints. Finding solutions
is the role of the underlying constraint solver which applies
several filtering techniques to prune the search space formed
by all the possible combinations. In practice, the constraint
models that are developed to solve concrete and realistic
testing problems usually contain complex control conditions
(conditionals, disjunctions, recursions) and integrate dedicated
and optimized search procedures [3]. In this work, our goal
is to develop an industry-strength constraint model able to
generate test sequences that to push the system towards error
states.

As we saw in the example in Section III, there can be many
adjustments/modifications on the initial time ¢ sent from the
robot controller, to the actual time ¢;, where the process value
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Fig. 2: Main error scenarios for the constraint model. Horizon-
tal lines indicate time. A black dot corresponds to an event.
A brush is visualized by black dots connected with lines.

is applied. The main focus of the constraint model we intend
to develop is summarized in the following list:

1) Overlapping events: A process value for a brush event
may get a time before an existing event in the trigqueue,
see Figure 2a.

2) Missing brush/event: In a burst of brushes, verify that
no brush-sets are lost, and that each brush is complete,
i.e. no events are lost, see Figure 2b.

3) Check of timing: Verify the time between events, and
between brushes, see Figure 2c.

4) Kill brush: Generate brush with error and verify grace-
ful and correct shutdown, see Figure 2d.

VI. CONCLUSIONS

ABB has a six month development cycle on the IPS, with a
new version released twice a year. Due to the complexity and
high demand of manual labour to perform tests, the integration
tests of the IPS is performed at the end of each development
cycle. A consequence of this is that complex timing related
errors that can’t be detected by use of other test methods early
in the development phase, will be detected very long time after
the error is introduced.

By use of CI in combination CP based testing techniques,
the time from a source code change to integration testing will
be reduced from close to six months to less than a day.
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