
AdScorer: An Event-Based System for Near Real-Time
Impact Analysis of Television Advertisements

(Industry Article)

Pål Evensen
∗

Hein Meling
paal.evensen@altibox.no hein.meling@uis.no

Department of Electrical Engineering and Computer Science
University of Stavanger, Norway

ABSTRACT
The media measurement industry is in turmoil, with the old
prediction-based models being challenged by more accurate
measurement techniques, based on actual viewer behaviour
drawn from much larger sample selections. As measurement
methods converge across different types of media, the on-
line/offline measurement divide will diminish. Television is
one such medium that has traditionally required offline mea-
surements. Advertisers are, for the most part, still accept-
ing predictions and historical behaviors rather than current
facts. Despite the limited accountability, yearly spendings
on television advertisements are still much higher than for
any other medium, and rising.

In this paper, we present AdScorer, a scoring system for
television advertisements. Our system is based on event
stream processing techniques, and can compute scores for
advertisements in near real-time based on channel change
events from viewer set-top boxes. Our results show that
AdScorer is capable of delivering detailed scores on a per-
advertisement spot basis for a whole block of commercials,
immediately after the commercial break has ended. The
scores include regional breakdowns with viewer numbers and
shares for each geographical region of Norway as well as na-
tional scores. Our evaluation of AdScorer demonstrates that
it is capable of scoring numerous channels simultaneously. In
our experiments, we used one machine to analyze five chan-
nels, but our system can easily scale to support hundres of
channels by adding more machines.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed systems

∗P̊al Evensen is also with Altibox.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’12, July 16–20, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1315-5 ...$10.00.

General Terms
Experimentation, Measurement, Human Factors

Keywords
TV advertisement viewership scoring, event processing

1. INTRODUCTION
In the traditional mass media marketing model of printed
media, radio, and television, up front prediction and sub-
sequently rating the exposure of an advertisement is based
on statistics collected from a very small fraction of the total
viewership. Thus, significant inaccuracies can be expected
in these statistics. Moreover, this inaccuracy mainly ex-
ists because of the broadcast nature of the traditional mass
media model, in which media consumers are secluded from
providing feedback to the broadcaster [10].

However, in recent years we have been shifting away from
this traditional model to an Internet-based model in which
media consumers are empowered with numerous additional
capabilities. With this model, the audience is no longer
a passive crowd of media receivers, but increasingly active
participants, uploading videos on YouTube, blogging, and
interacting with each other on social media platforms such
as Twitter and Facebook.

Additionally, the pervasiveness of devices such as set-top
boxes (STBs) with recording capabilities, smart phones and
tablets has enabled people to create their own daily media
schedule, where they can choose what media to consume,
where and when. Thus, with this changing media landscape
comes new opportunities for more accurate prediction and
analysis of audience behavior and responses. However, de-
spite the advantages of online advertisement in terms of ac-
countability and targeting, yearly spendings on traditional
television commercials is rising [15].

In previous studies, researchers have collected channel cha-
nge events from networks of STBs and used the data for off-
line and even online computation of statistics for a number
of parameters, including rating of programs and program
categories [6, 9]. The primary focus of this paper is online
analysis of the impact of advertisements on channel change
behaviors among a large population of viewers. The analysis
provides a score for each individual advertisement spot. The
resulting scores can be useful for numerous parties, such as
TV networks, advertisers, and cable network operators, as
well as the general public.

To facilitate online analysis, we have developed AdScorer,
which combines numerous advanced technologies, including
Event Stream Processing (ESP), video stream content recog-
nition, and message-oriented middleware, in order to gener-
ate an instantaneous evaluation for each advertisement spot.

AdScorer is deployed in a network with more than 350.000
STBs distributed amongst 250.000 households in Norway.
These are spread across the whole country, and represents
more than 11% of Norway’s 2.2 million households [18],
which is a sufficiently large and diverse sample to be statis-
tically significant. As such, this gives us an excellent oppor-
tunity to observe how the system performs in a large-scale,
real-world setting.

Several algorithms exists for evaluating television adver-
tisements [8], but to our knowledge, none of these works
carries the near real-time aspect of our system, nor have
they been deployed in a live IPTV network at any scale.
Furthermore, none of these covers the complete value chain
necessary to perform such calculations, which include STB
clients, channel change event collection, distribution and ag-
gregation layers for translating channel change events into
statistics, detection of advertisements from the TV channel
stream, and finally provide a score for each advertisement.

In previous work [9], we have demonstrated how viewer
statistics can be generated in near real-time from process-
ing STB zap events, both by using a specialized event pro-
cessing language (EPL) and a general purpose programming
language (Java). The system presented here, builds on the
previous implementation, in the following ways: It has been
extended to score advertisements, and it has been embedded
in a generalized ESP architecture, presented in Section 4.
Section 3 explains how AdScorer is used to provide a success
score for each individual advertisement during commercial
breaks, and in Section 7 we evaluate our implementation of
AdScorer. Section 8 surveys related work, and in Section 9
we speculate about the future of media measurement. Fi-
nally, we present our conclusions in Section 10.

2. BACKGROUND
We discuss the current state of the media measurement in-
dustry, how it is maintained, and why it needs to change.

2.1 The Current State of Media Measurement
Despite the fact that viewing habits and media delivery
methods has changed drastically over the last decade, the
basic methodology for measuring the impact of television
content is still the same as in the early nineties [13], with
some aspects, like the survey part, dating back to the fifties.

While the public’s response to web advertisements can
be analyzed and evaluated in near real-time with reasonable
precision and confidence, advertisers are generally limited to
base their evaluation on surveys and the daily logs of a small
sample of selected households (7500 in the US as of 2010 [7])
when it comes to advertisements presented on television. A
detailed survey of the current state of television audience
measurement is provided in [9].

As the traditional method of television content distribu-
tion (one-way broadcast) is replaced by full-duplex distri-
bution capabilities made possible by IPTV, the traditional
survey approach used to estimate television viewership will
be replaced by more accurate methods, by capitalizing on
STB data [7, 12, 8, 9]. We argue that there is no longer any
reason to base the analysis on surveys, other than it being

the established currency that the industry knows, referred
to as entrenched practices [7, 10] by some.

In the 1950s, the Nielsen company [16] invented the rating
system that dominates the television industry today. Here in
Norway, the main provider of viewership data to the official
television networks is TNS Gallup [19], a company that spe-
cializes in polls and ratings. The measurement methods of
this company is still the same as those pioneered by Nielsen.

The status quo in the media measurement industry is
maintained by contracts that make it very difficult for com-
petitors to unseat the existing players. Yearly spendings
on long term contracts are estimated to be around $50 mil-
lion per year [10] between networks such as NBC Universal
and Nielsen. And the contracts runs for a long time; the
current contract between TNS and the Norwegian networks
runs from 2008 until 2015.

In general, we believe that some advertisements may an-
noy viewers more than other advertisements, which in turn
can cause some viewers to change the channel. Thus, neg-
atively affecting the impact of subsequent advertisements
within the same commercial break, as well as the rating for
the actual program(s) separated by the commercial break.
This is a good argument against the current method used
in both US and Norwegian television networks, where ad-
vertisements are displayed in random order within the com-
mercial breaks [12].

3. SYSTEM ARCHITECTURE
This section gives a high-level overview of AdScorer’s system
architecture, which consists of the following components:

• Broadcast television network

• STB client software

• Advertisement detector component

• Message-oriented middleware

• EventCaster event processing middleware

• Time-series database

AdScorer is an event-driven architecture, in which event pro-
ducers and event consumers are decoupled [17]. Figure 1
illustrates how the components interacts at a high level. On
the left side of the figure, we have the two main event pro-
ducers, the AdDetector located in our data center and a
large number of STBs located in cable customers homes.
The AdDetector component automatically identifies adver-
tisement spots in the television video stream, and subse-
quently publishes an event containing:

• An identifier for the advertisement

• The channel name

• Start or stop status for the advertisement

These events are published to a message queue, and subse-
quently picked up by another component, as we explain in
more detail later. Additionally, the STB clients generates
several event types:

• Channel change event (also called a zap event)

• HDMI connection (TV set) on/off event

J2EE Application Server

Esper

adscorer
config

ecaster-producers
(JAR)

AdDetector

ZapCollector

ecaster-adapters
(JAR)

UdpListener

TcpListener

FileListener

J2EE Application Server

ecaster-core
(EAR)

Manager GUI

ecaster-mgr
(WAR)

JMX

HornetQ
Esper

viewerstats
config

Figure 3: EventCaster Overview

• STB audio on/off event (mute)

• STB volume change event

These STB events are transmitted over UDP to a Zap-
Collector in our data center. The ZapCollector decodes the
packets and places them on a message queue as well.

AdScorer uses two instances of the EventCaster core
application, presented in Section 4. One instance continu-
ously aggregates the channel zap events and mute/unmute
events into viewer statistics and publishes them on the mes-
sage queue every second. The other instance subscribes to
these ChannelStat events as well as AdStart events emit-
ted by the AdDetector, as described above. It is responsi-
ble for scoring the advertisements, according to the criteria
presented in Section 5. Components of the EventCaster
middleware are colored yellow in Figure 1.

The sequence diagram in Figure 2 shows the interaction
between the components during the evaluation of an adver-
tisement.

4. EVENTCASTER
This section describes the technical details of the Event-
Caster middleware, and explains the choices of underlying
technologies. Written in Java, the EventCaster middle-
ware facilitates general event processing by combining our
own Java interfaces with XML, J2EE technologies and the
Esper Complex Event Processing (CEP) engine. The Esper
engine is programmed using the declarative Event Process-
ing Language (EPL), which builds on the SQL-92 syntax.

Figure 3 illustrates the EventCaster architecture: Soft-
ware packages are denoted with dotted lines, instances with
blue circles, objects with blue rectangles, and application
server instances with yellow squares. In the lower left part,
we have the ecaster-adapters, which are general protocol

adapters, used by ecaster-producers to receive data. In the
AdScorer system, the ecaster-producers consists of one Zap-
Collector-instance and one AdDetector-instance.

The ecaster-core package contains the Esper CEP engine,
and is deployed on several instances of the JBoss Application
Server. All instances are identical, except the main configu-
ration file, which contains: the EPL queries, and defines the
connections between specific queues and event processors, as
well as between EPL statements and event publishers. The
lower right part of Figure 3 shows the ecaster-mgr package
that contains a web application for managing the queries
and its connections to event publishers.

Being a platform for distributed event processing, its main
interaction model is publish/subscribe, which allows event
producers and consumers to be changed without affecting
other parts of the system, and at the same time eliminates
some of the latency and processing overhead that typically
comes with request/reply style interactions.

Thus, HornetQ was chosen as the distribution layer for
events due to its high performance, ease of use, and the fact
that it is open source. Events are distributed on multiple
queues, according to event type, which allows for greater
flexibility and cleaner code on the consumer part. That is,
there is no need to set up a filter for extracting different
event types. Some may argue against this design, in favor
of using only a single queue for all event types, because the
temporal ordering of the events might be affected under high
load. However, we argue that this is more of a theoretical
than practical concern, as the 5 minute average CPU load
typically hovers around 5% for the HornetQ server during
normal operation. We currently run it on a virtual machine
less powerful than your average desktop.

Management of the event processing engine (ecaster-mgr),
however, is exposed over a request/reply interface, due to the
interactive nature of handling configuration changes through
a web-based user interface.

Esper was chosen as the event processing engine for much
of the same reasons as HornetQ; it is open source, it inte-
grates easily into Java projects, and is easy to set up and
configure. Moreover, since Esper rely on EPL for specifying
queries, which is based on the SQL-92 syntax, some of the
burden of learning a new declarative language is eliminated,
provided that the developer already knows SQL.

A J2EE application server comes with useful abstractions
for handling things like database connections, access control
and application management. HornetQ is built and main-
tained by the JBoss community, and the JBoss application
server comes with HornetQ support out of the box, and as
such, was a natural choice of application server.

The use of an application server allows for the convenience
of packaging the main package (ecaster-core) together with
all its dependencies in a single Enterprise Archive (EAR),
deployable to the application server. The building and pack-
aging of EARs can be automated using a build tool like
Maven [14], and is an elegant way of handling dependencies.

An essential element of the EventCaster middleware is a
pair of interfaces, named EventProcessor and EventPublisher
as shown in Listings 5 and 6. These are used to bind various
event processors and event publishers to EventCaster and
its associated Esper engine and EPL queries. To facilitate
this binding, EventCaster requires a configuration file as
shown in Listings 1 and 2. This configuration file defines the
set of EPL queries to install and which event processors to

TV Network

AdDetector
Mute

Viewer
statistics
generator

Ad success
evaluator

STBs

In
p

u
t ad

ap
ters

Stats

Advertising
agency

Ad start

Channel zap events

F
ilterin

g,
tran

sform
ation

Zap

Ad success score

Historical
stats

Processing

QueueingInput

Figure 1: AdScorer Architecture Overview

Figure 2: Ad Scoring Sequence Diagram

be loaded at startup. This configuration can be managed in
several ways. One approach is to use a Java Management
Extensions (JMX) interface accessible through the web in-
terface of the application server, another is to use the JCon-
sole tool bundled with the Java SDK, or the ecaster-mgr
web interface.

The EventPublisher interface is used both by the input
adapters and for event processing within the middleware.
A Java class implementing the EventPublisher interface can

be connected to EPL queries, and can publish their output
events in a variety of ways. Currently, we have implemented
publishers that output events to e-mail, text file, databases
in addition to the HornetQ message bus. Additional types
of publishers could easily be implemented on demand, for
instance using HTTP POST as the method of delivery.

Events originate from outside of the system, and are piped
onto the message queue by input adapters, which are stan-
dalone clients for receiving events over various protocols.

These events are then routed to the processing engine by
connecting a Java class that implements our EventProcessor
interface, to a message queue relevant to that event.

Listing 1 is an excerpt from the EventCaster instance
doing the advertisement impact evaluation, and illustrates
how two EventProcessor interfaces are connected to differ-
ent message queues. Listing 2 is from the configuration of
the EventCaster instance for aggregating viewer statis-
tics, and shows how publishers are connected to EPL queries.

Listing 1: EventCaster Processor Configuration
<!--List of processors to be loaded at startup-->
<processors>

<processor>
<name>tv.ChannelStatProcessor</name>
<input-resource>lvq.tv.stats.viewerstats</input-resource>
<enabled>true</enabled>

</processor>
<processor>

<name>tv.AdStartProcessor</name>
<input-resource>tv.entries.input.ad</input-resource>
<enabled>true</enabled>

</processor>
</processors>

Listing 2: EventCaster Query Configuration
<!-- Decorating the program stats with percentage -->
<epquery>

<statement>
@Name(’ZapSnapInsert’)
insert into ZapSnap
select *, percent(viewers, sum(viewers)) as activity
from ChannelWin
output snapshot every 1 seconds
order by viewers desc

</statement>
<listeners>

<listener>
<name>tv.TvStatSnapshotPublisher</name>
<output-resource>lvq.tv.stats.viewers</output-resource>

</listener>
<listener>
<name>tv.TvStatDataMiner</name>
<output-resource>viewer_stats</output-resource>

</listener>
</listeners>

</epquery>

Listing 3: EPL AdScorer Whole Break Query
select * from pattern [
every
a=tv.CommBreak(begin=true)
-> b=tv.AdStat(channel=a.channel)
until c=tv.CommBreak(begin=false, channel=a.channel)

]

The simplicity of the EPL language is shown in Listing 3,
which is the query for collecting all AdStat events for a tele-
vision channel between two CommBreak events. A listener,
implemented in Java, then publishes the result via e-mail.
Listing 4 is more complex, and shows the EPL query for
collecting and generating statistics on a per-advertisement
basis. The retained and iar functions are custom written
Java methods developed specifically for calculating audience
retained through the advertisement.

Listing 4: EPL AdScorer Per-ad Query
insert into tv.AdStat
select
a.adId as adId,
a.channel as channel,
a.time as startTime,
b.time as stopTime,
a.ipList.size() as viewersBegin,
iar(a.ipList, b.ipList) as iar,
retained(a.ipList, b.ipList) as retained
from pattern [
every (
a=AdIdComplete(begin=true)
-> b=AdIdComplete(
begin=false,
channel=a.channel,
adId=a.adId)

)
]

Listing 5: Event Processor Interface
public interface EventProcessor<T> {
public void processEvent(T event);

}

5. SCORING ADVERTISEMENTS
In our implementation, an advertisement spot is evaluated
according a wide range of criteria, as listed in Table 1.

These scoring criteria may be represented in both actual
numbers, and additionally in percentage form, in the cases
where they are related to other numbers, such as interval
between number of viewers at the start and end of the ad-
vertisement. The Initial Audience Retained (IAR) criteria,
proposed by Dorai et al [8], is the fraction of viewers retained
for the duration of an advertisement, and is calculated as
follows:

IAR =
ε

α

where ε and α is defined in Table 1.
By eliminating the viewers that were not present at the

start of the advertisement, the expect to eliminate most
channel surfers (viewers that constantly flicks between chan-
nels during the commercial break). Combined, these criteria
make up a final score, represented as a numerical value be-
tween 0 and 10. This score says something about the impact
of the advertisement, and gives advertisers an unprecedented
opportunity to measure the impact for each individual ad-
vertisement spot, based on factual observations, as opposed
to claimed attitudes and numbers.

6. DEPLOYMENT
We now describe the current deployment and our planned
deployment with enhanced STB client software, which is ex-
pected to facilitate significantly more accurate statistics and
enable us to conduct more interesting behavioral analysis of
television viewers.

6.1 Current Deployment
The STB clients currently deployed in the Altibox network
only reports channel change events where the viewer remains
on the same channel for more than one minute. In addition,
the forwarding of recorded channel change events is delayed
until either a 30-minute timeout expires, or a total of ten

Criteria Symbol
Number of viewers at the start of the advertisement α
Number of viewers at the end of the advertisement θ
The interval between α and θ τ
Number of viewers that stayed on the channel throughout the advertisement ε
Number of viewers that muted the sound during the advertisement ∆
Number of viewers that was in mute mode when the advertisement began γ
Number of viewers that unmuted the sound during the advertisement δ
Number of viewers that turned on TV during the advertisement Ω
Number of viewers that turned off TV during the advertisement ω
Initial Audience Retained (ε/α) IAR

Table 1: Scoring Criteria

Listing 6: Event Publisher Interface
public interface EventPublisher<T> {

void publishEvent(T event);
/**
* @return address of the published events
*/
String getDestination();

}

channel changes have been collected in a buffer. Unfortu-
nately, this sampling mechanism prevents us from capturing
interesting behaviors of television viewers, e.g. the channel
surfing behavior during commercial breaks. Additional de-
tails regarding the functionality of the current STB client
reporting software can be found in [9].

A new STB client software has been developed, in which
channel changes and other STB events are forwarded much
more rapidly. The new STB client will also forward STB
events related to mute, volume, and HDMI status on or off.
The latter will allow us to determine if the TV connected
to the STB has been turned off. We provide further details
on how the new STB client will be used in our planned
deployment below.

Unfortunately, it was not possible to deploy the new STB
in time to obtain results for this paper, as company policy
intending to secure the stability of the IPTV platform means
that there are very few windows of opportunity for updating
the STB client software during the year. This means that
scoring results from the current deployment does not include
several of the values from Table 1. The results presented in
Section 7 were obtained using data from the old STB client
software.

The AdDetector part of the scoring system is commercial
software from a vendor that also delivers content-recognition
technology to some of the major players in the media mea-
surement industry.

6.2 Planned Deployment
A better understanding of viewer behavior will hopefully be
gained when the new STB client software is deployed, as the
reduced reporting interval will capture most of the channel
surfers, as well as expanding the viewer action repertoire by
including mute and volume events.

Furthermore, HDMI status monitoring will address the
main criticism against STB-based viewer statistics, namely
that most people do not turn off their STB. As such, it is

impossible to determine whether there are people watching
unless there is STB event activity. Being able to detect
whether the TV is turned on or off, enables us to establish
with a great deal of confidence whether someone is watching,
as virtually everyone turns off the TV when going to bed or
leaving the house. It may still be running in the background,
while people are doing other things, but then again, the
traditional methods are no better in this regard.

It is presently unclear what the impact of this flaw in our
previous statistics [9] and other IPTV measurements [6] will
be. But we expect it to be significant, as we discuss next.

The new STB client has been successfully tested in Alti-
box’ lab, and was recently deployed to customers as a silent
upgrade, which means that only those that power cycle their
STB device will be upgraded. Those that leave the STB on,
will be upgraded later during a forced upgrade. One day af-
ter deploying the new STB software, approximately 15.000
STBs had upgraded, and after a week 80.000 STBs had up-
graded. Out of a total of 350.000 STBs, these numbers seems
to indicate that a large fraction of STBs are rarely powered
off when the customer is not watching TV. Thus, we predict
that STB-based statistics may see significant discrepancies
between those that only monitor zap events and our new
approach.

7. EVALUATION
In this section we describe some of the experiments that we
have conducted with AdScorer. We present both a perfor-
mance evaluation and some interesting observations derived
from the AdScorer system. The section is concluded with
an evaluation of the techologies used.

7.1 Environment and Experiment Setup
For the experiments, we obtained 1.5 hours of prime time
broadcast television sampled from the largest commercial
networks, starting at 18:45 on a Thursday evening. Be-
fore running the experiments, 23 days of STB data was put
through the system up to the point where the experiment
started, in order to establish the appropriate statistics.

The experiments involved four servers in addition to the
database server keeping track of state. One server was des-
ignated event producer, simulating channel zaps obtained
from STBs and advertisement identifications obtained from
the AdDetector system. Another server were running the
message bus, and two more servers were running instances
of the ecaster-core application, one configured to generate
viewer statistics per channel, and the other configured to

score advertisements, as illustrated in the processing section
of Figure 1.

Recorded video streams and STB data was used in order
to be able to debug and verify system correctness, rather
than operating on live video streams and STB data. More-
over, due to time constraints and lack of appropriate video
editing tools, the experiments was conducted by simulat-
ing the output from the AdDetector system, using manually
recorded timestamps and advertisement IDs. However, fin-
gerprints were made from each commercial in one of the
commercial breaks of the recordings, using the AdDetector
system, and it was verified that the system successfully de-
tected each of them within two seconds when streaming the
broadcast recording to system.

Consistency of advertisement scoring results were verified
by repeating the tests two times, ensuring that the values
were not significantly different from one run to another.
While we found slight variations between commercials, the
biggest variation we could find was a 0.000349335% dis-
parance between the number of retained viewers for the first
advertisement in the first commercial break.

The variations in scores can be attributed to the dis-
tributed nature of the system, combined with the event
stream processing techniques used, where variations in net-
work and processing latency might lead to slightly different
states.

Because channel statistics are generated on a per-second
basis on a different machine, small variatons in viewer num-
bers, as described above is likely to occur. The sequence dia-
gram in Figure 2 should give the reader an intuition for how
this can happen, considering that events of type ChannelStat
and AdStart originate from different machines.

The system’s ability to handle multiple channels simulta-
neously was tested by synthetically generating CommBreak
and AdStart events for five different channels at the same
time, while the system was receiving live channel zap events.
System load was not significantly affected during this exper-
iment. The resulting output files appeared to be correct for
the time period sampled, although it was not possible to re-
peat the experiment with identical values, as the system was
operating with live STB data for this particular experiment.

7.2 Scoring Results and Viewer Statistics
Figure 4 illustrates the retained number of viewers for each
commercial in a break that started at 18:56:30 on TV2 Norge,
divided into regions. The difference in viewer numbers be-
tween regions for the most part reflects geographical varia-
tions in the number of deployed STBs in the Altibox net-
work. However, there are some relative differences as well,
illustrated in Figure 5, where the regional shares of one of
the advertisements presented in Figure 4 are displayed.

Although most of the commercial breaks are clearly vis-
ible in the viewer plots (Figures 6 and 7), at 18:48, 18:56,
19:23 and 19:54 for TV2, and at 18:53, 19:23 and 19:51 for
TVN, the drops in viewer numbers is not nearly as signifi-
cant as we had expected. Some of this may be attributed to
the lack of resolution on STB data, preventing us from accu-
rately capturing channel surfers, as explained in Section 6.1.
Moreover, we also note that we can clearly see from Fig-
ure 7 that there is a steady growth in viewer numbers over
the entire measured interval, except for the significant drop
on TV2 at 19:54, and similarly on NRK1 at roughly 20:00.

Su
ba

ru

O
m

eg
a3

O
bs

by
gg

R
iis

bi
lg
la
ss

N
or

ge
sE

ne
rg

i

Elk
jø

p

B
M

W

Lam
bi

1.5

2

2.5

3

·104

V
ie

w
er

s

Viewers retained

Vest

Nord

Oslo

Innland

Midt

Sor

Oslofjord

Figure 4: Viewers retained for several commercial
spots, split into regions

Tot
al

Ves
t

N
or

d
O
slo

In
nl

an
d

M
id

t
So

r

O
slo

fjo
rd

0

2

4

6

8

10

12

9.48
9.84

11.01

7.04

11.61

7.32

10.15 10

S
h
a
re

(%
)

Region sharesAdvertisement: BMW

Figure 5: Regional viewer shares for a single adver-
tisement

We note that NRK1 is a non-commercial TV channel, and
the largest in Norway.

7.3 Event Middleware Technologies
Here, we give a brief account of our experiences with the
various middleware technologies used as building blocks for
the event processing and distribution part of AdScorer.

7.3.1 Esper
We found Esper to be very well documented and easy to
get started with. One of Esper’s most useful abstractions is
the data window, where one can define a view based on one

50	

60	

70	

80	

90	

100	

110	

120	

130	

140	

150	

160	

18:45	
 18:47	
 18:51	
 18:54	
 18:57	
 18:59	
 19:03	
 19:06	
 19:09	
 19:12	
 19:15	
 19:18	
 19:22	
 19:26	
 19:29	
 19:33	
 19:37	
 19:41	
 19:44	
 19:48	
 19:52	
 19:56	
 19:59	
 20:02	
 20:05	
 20:09	
 20:12	

TVN	

TV2	

NRK1	

Figure 6: Stacked viewership (in thousands) for the three largest channels, NRK1, TV2, and TVN.

10	

15	

20	

25	

30	

35	

40	

45	

50	

55	

60	

65	

70	

75	

18:45	
 18:47	
 18:51	
 18:54	
 18:57	
 18:59	
 19:03	
 19:06	
 19:09	
 19:12	
 19:15	
 19:18	
 19:22	
 19:26	
 19:29	
 19:33	
 19:37	
 19:41	
 19:44	
 19:48	
 19:52	
 19:56	
 19:59	
 20:02	
 20:05	
 20:09	
 20:12	

NRK1	

TV2	

TVN	

Figure 7: Viewership (in thousands) for the three largest channels, NRK1, TV2, and TVN.

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

S E S E S E

TVN	

Figure 8: Viewership (in thousands) for TVN annotated with Start and End of commercial break.

Listing 7: EPL to hold last zap event for each STB
create window ZapWin.std:unique(ip) as tv.ChannelZap

or more properties. For instance, creating a window that
holds the last ChannelZap event per STB was achieved with
a single line of EPL, as shown in Listing 7.

However, we experienced limitations with respect to sup-
ported data structures, e.g., to use a HashSet to store snap-
shots of IP addresses tuned to a particular channel at the
start and end of an advertisement required a custom aggre-
gation method and an accompanying Factory class. Esper
currently only supports primitives and the Map data type.

7.3.2 HornetQ
Getting started with HornetQ was also fairly simple, and
simply a matter of downloading the distribution, making
some small changes to the main configuration file and exe-
cuting the startup script.

Interacting with the HornetQ server was straightforward
as well, and required only the inclusion of two JAR libraries
on the client side (three, if one needs to use the JMS over-
lay). Even though the HornetQ distribution includes a JMS
overlay, we opted to use HornetQ’s native core API instead.
The core API only offers two abstractions; queue and ad-
dress, and the documentation suggests that one can build
any interaction included in the JMS specification from these.

There was, however, a learning curve regarding the behav-
ior of the middleware, most notably in the behavior of mes-
sage acknowledgments and having messages removed from
the server after client delivery, and implementing the pub-
lish/subscribe interaction pattern.

Some of these problems probably could have been avoided
by using the JMS overlay, as the overlay seems to take care
of many of these behaviors automatically, while the core
API to a greater extent leaves it up to the programmer to
implement the interactions. The reasons for going with the
native API was that it meant one less JAR to depend on and
the documentation suggesting slightly better performance
and a simpler abstraction. It seems clear now, however, that
using the JMS overlay would have been the easier route to
take, at least for the publish/subscribe interactions.

HornetQ offers excellent performance, and its STOMP in-
terface has proved a convenient way of providing push-style
interactions to non-Java client devices.

8. RELATED WORK
Kempe et al [12] argues that audience response should be
reflected in the pricing, ordering and selection of ads within
a commercial break. In their paper, simple algorithms to
measure viewer behavior in response to commercials are pre-
sented, and the author’s concludes the paper with a more
sophisticated algorithm that builds upon the insight gained
from these, named the Audience Value Maximization Algo-
rithm.

In their paper on adapting online advertising techniques
to television [8], Dorai-Raj and his colleagues at Google also
advocates a business model that to a greater extent considers
the audience response to advertisements in television, by
applying many of the techniques used in online advertising
to televised commercials. One of their proposed metrics of

viewer response is the IAR algorithm, which are included in
the scoring results of AdScorer, presented in Section 5.

An obvious, but important insight presented by Kempe
et al [12], is that while online ads can be measured through
the positive action of a click, viewers are primarily limited
to the negative action of changing the channel in response
to televised commercials. The actions of muting/unmuting
the audio or turning off the TV or STB are not mentioned
by Kempe, or in any of the other papers we reviewed, but
also belongs to the current repertoire of viewer responses.

The inclusion of the aforementioned user actions is one
of the features of AdScorer that sets it apart from other
systems.

At the commercial end of the spectrum, Rentrak [11] ap-
pears to be the market leader for STB data aggregation,
and is already collecting usage data from millions of STBs
deployed by AT&T, Charter, Dish Network and Midconti-
nent Communications [11]. UK satellite operator BSkyB is
another actor in the STB data market that are already col-
lecting STB usage data from over 30 000 devices, correlating
these with brand purchasing history from many of the same
homes [5].

TRA [4] also combines STB data with credit card trans-
actions, using a third-party blind matching method, where
TRA never sees any addresses or names involved in the
transactions, in order to measure the effectiveness of adver-
tising campaigns, as well as profiling viewer groups. Data
generated from the AdScorer system could also be corre-
lated with purchase activity in the same manner as TRA
and BSkyB, and to target ads, like BSkyB intend to do in
2013, provided that privacy laws permits it.

CasterStats [2] provides audience measurement for stream-
ing media, in the form of reports that can be generated
through a web interface. However, this appears to be lim-
ited to media distributed on the Internet and not broadcast
television media, unlike the work presented in this paper.

Coalition for Innovative Media Measurement (CIMM) [3]
is a coalition of television content providers, media agencies
and advertisers intending on finding new and better ways
to measure television media consumption, in the changing
media landscape. A main objective of this effort is finding
values and applications of STB data, and their contributions
include an analysis for the STB data landscape, as well cre-
ating and maintaining metrics and an ontology relating to
STB data [1].

If CIMM were to succeed in establishing a common stan-
dard for STB viewer measurement data, it would greatly
benefit all actors who have access to STB data, including
Altibox.

9. FUTURE OF MEDIA MEASUREMENT
Because the competition for audience attention has become
increasingly intense through the digitization of media, the
advertising industry need to continuously improve and re-
evaluate its measurement and targeting methods. The rea-
soning behind this is that information consumes the atten-
tion of its audience, and while telecommunication bandwidth
is practically infinite, human bandwidth is becoming increas-
ingly scarce [10]. A logical conclusion that can be extracted
from this insight, is that television networks should change
their business model from selling audience exposure in the
form of network time to selling viewer attention, as argued
by Kempe et al [12].

Where the traditional mass media channels have estab-
lished currencies for audience measurement, no such stan-
dard currency exists for Internet audiences. An attempt at
establishing a standard set of guidelines on how to count im-
pressions was made in 2002 by the Interactive Advertising
Bureau, but ended up “extremely confusing and ultimately
a compromise” [10]. The main reason for this is the sheer
complexity involved in delivering the content.

The difficulties of standardization, however, is unlikely to
prevent new models of media measurement from emerging in
the near future, as the advertisers and content providers be-
comes aware of the opportunities of more accurate audience
targeting afforded by technologies.

Dorai et al [8] predicts that the online-offline division we
have today will soon be replaced by measured-unmeasured
as measurement methods converges between different types
of media. This view is shared by others as well; Internet and
Television is predicted to be measured as one by 2015 in a
report [7] published by Forrester Research.

Despite these predictions, the established currencies in
mass media audience measurement are unlikely to go away
anytime soon, simply because advertisers and media chan-
nels needs to agree on a common measure for pricing, even if
this is inaccurate [10]. However, the increasing expectations
for accountability will create a market for additional, more
accurate measurements that can supplement the standard
currencies.

The repertoire of viewer actions is likely to grow in the
near future, as the media of television gains more interac-
tivity. Examples include interactive links to buy a product,
rating possibilities, like/dislike buttons and games.

10. CONCLUSIONS
We have demonstrated a new way of scoring television adver-
tisements that is more is in line with current measurement
methods for online media than what is the current practice
in the media industry, and more suited for the new models
of media consumption.

Our results indicate that our implementation is capable of
scoring advertisements on multiple channels simultaneously
in near real-time with consistent results, and that event pro-
cessing is an effective tool for achieving this.

Furthermore, AdScorer is capable of delivering an un-
precedented level of detail, not possible through the current
measurement regime.

In future work, we aim to complete the implementation
of our system, with higher resolution on channel zaps and
including volume change, mute and HDMI status events. We
are already in the process of developing a graphical front end
that operates on live data and displays the scoring results
in near real-time.

With this we intend to conduct more detailed viewer be-
havior analysis in order to derive an improved understand-
ing of the media and to use this understanding to devise new
service offerings.

11. ACKNOWLEDGMENTS
We would like to thank Per Fjeld for his valuable contribu-
tions in terms of ideas and industry knowledge, and Dagfinn
Wåge, Omar Langset and Ronny Lorentzen for facilitating
the project.

12. REFERENCES
[1] Cimm lexicon 1.0. Web, May 2010. http://www.

cimm-us.org/CIMM_STB_Lexicon_1_May_2010.pdf

(accessed 08.11.2011).

[2] CasterStats. Web, 2011.
http://www.casterstats.com/(accessed 29.11.2011).

[3] Coalition for innovative media measurement. Web,
November 2011. http://www.cimm-us.org/about.htm.

[4] TRA Global. Web, 2011.
http://www.traglobal.com/(accessed 27.11.2011).

[5] Bskyb preparing for linear targeting, scheduled for
spring 2013. Website, 2011. http://www.v-net.tv/
bskyb-preparing-for-linear-targeting-in-spring-2013/

(accessed 30.05.2012).

[6] Meeyoung Cha, Pablo Rodriguez, Jon Crowcroft, Sue
Moon, and Xavier Amatriain. Watching Television
over an IP Network. In IMC, 2008.

[7] David M. Cooperstein, Kim Le Quoc, and Jean-Yves
Lugo. The future of media measurement. Web,
January 2010.

[8] S. Dorai-Raj, Y. Interian, I. Naverniouk, and
D. Zigmond. Adapting online advertising techniques
to television. Online Multimedia Advertising:
Techniques and Technologies, page 148, 2010.

[9] P̊al Evensen and Hein Meling. A paradigm comparison
for collecting tv channel statistics from high-volume
channel zap events. In DEBS, pages 317–326, 2011.

[10] Marissa Gluck and Meritxell Roca Sales. The future of
television? advertising, technology and the pursuit of
audiences. Web, The Norman Lear Center, University
of Southern California, September 2008.
http://www.learcenter.org/pdf/FutureofTV.pdf.

[11] David Goetz. Mpg signs rentrak deal for set-top-box
data to help with upfront planning. Web, April 2011.

[12] D. Kempe and K.C. Wilbur. What can television
networks learn from search engines? how to select,
price, and order ads to maximize advertiser welfare.
Technical report, Working paper, Viterbi School of
Engineering, University of Southern California.
http://ssrn.com/abstract1/41423702, 2009.

[13] Karl Philip Lund. Gamle m̊alemetoder! Web, October
2010. http://www.kampanje.com/kommentert/
article5772345.ece (accessed 25.11.2011).

[14] Apache maven. Website, 2012.
http://maven.apache.org/ (accessed 22.05.2012).

[15] Magna: Tv ad spending on the upswing for
foreseeable future. Website, 2010. http://www.
mediapost.com/publications/article/129755/

(accessed 30.05.2012).

[16] Nielsen Ratings. Web, 2011.
http://en.wikipedia.org/wiki/Nielsen_ratings.

[17] Opher Etzion and Peter Niblett. Event Processing In
Action. Manning, August 2010.

[18] Statistisk sentralbyr̊a (statistics norway). Website,
2012. http://www.ssb.no/familie/ (accessed
26.05.2012).

[19] TNS Global Market Research. Web, 2011.
http://www.tnsglobal.com/.

