Sensor Virtualization with
Self-Configuration and Flexible Interactions

Pal Evensen, Hein Meling
Department of Electrical Engineering and Computer Science
University of Stavanger, Norway
paal.evensen@gmail.com, hein.meling@uis.no

ABSTRACT

This paper presents the design and implementation of a sim-
ple and elegant middleware architecture providing wvirtual
sensors as representatives for any type of physical sensors.
With our middleware, external applications can seamlessly
discover sensor-hosted services through Zeroconf and it pro-
vides a standardized communication interface that applica-
tions can use without having to deal with sensor-specific
details. The limited capabilities of most types of sensors
prevent the inclusion of a full communication stack with IP
addressing. Yet, through the use of virtual sensors, a uni-
form communication interface based on UDP/TCP sockets
can be exposed to external applications. This will signifi-
cantly simplify application development for integrated ser-
vices involving multiple types of sensors.

For evaluation and testing purposes we present a simple
demonstration using SUN SPOT sensor devices connected to
a laptop computer through a gateway device. The demon-
stration shows how the Zeroconf protocol can be used to
automatically discover services hosted by a multitude of de-
vices in the home, how to establish networking between the
devices, and present the services in a browser window.

1. INTRODUCTION

Wireless communication technologies enables seamless com-
munication between residential network entities such as set-
top-boxes, sensors, control units and other devices, and are
typically far less costly to install than their wired counter-
parts due to cabling. These technologies have opened up
a whole range of new applications in the utility segment,
like automatic meter reading (AMR) of power consumption,
remote control of light and heating, security and safety sys-
tems, health monitoring and electrical appliances containing
tiny embedded systems with networking capabilities in gen-
eral. These services are beginning to become available to
consumers as part of smart home concepts [13] offered by
certain service providers on top of and integrated with tra-
ditional IP-based services such as Voice over IP, IP-based

television and Video on Demand.

However, the heterogeneity of communication protocols and
the mixture of addressing schemes used by networked de-
vices of different make and model is one of the biggest chal-
lenges when developing integrated smart home services. Most
smart home systems offered today are based on proprietary
all-in-one solutions, where the sensors and actuators might
use a proprietary RF protocol over the 868MHz band, while
others might use ZigBee, Bluetooth, WiFi or another IEEE
802.x-based protocol over the 2.4GHz band. Furthermore,
most devices have their own application-level protocol for
communicating control commands and retrieving data. More-
over, due to the limited capabilities of many types of sensors,
a full communication stack with IP addressing is simply un-
feasible. Yet, it would significantly simplify application de-
velopment if interaction with the sensors were based on UDP
or TCP sockets and IP addressing schemes. Currently, these
issues hampers innovation and development of new (possi-
bly third-party) smart home services. Another obstacle to
the adoption of smart home technology is the complexity of
setting up and managing the networking between devices,
deterring most home owners from acquiring such solutions.
Hence, it is paramount to the success of networked homes
that device configuration is performed automatically.

This paper presents the design and implementation of a
simple and elegant middleware architecture providing wvir-
tual sensors as representatives for any type of heterogeneous
physical sensors. A virtual sensor provides transparent dis-
covery of arbitrary sensor devices through the use of Ze-
roconf protocols [5]. This enables external applications to
discover sensor-hosted services through Zeroconf and it pro-
vides a standardized communication interface that applica-
tions can use without having to deal with sensor-specific
details. That is, virtual sensors also provides a uniform
communication interface to external applications, based on
UDP/TCP sockets or even HT'TP. This is accomplished by
abstracting functionalities common to most sensor models,
and writing custom wrappers (drivers) for the specifics of
each sensor model. This way, applications need not know
anything about the physical or logical communication pro-
tocols used by the sensors, making the same network ser-
vices usable with any sensor model sharing the same basic
functionality. For instance, a light-controlling application
should be able to operate independently of the actual lumi-
nosity sensors used. Note that, the architecture is generic
and can be used in a wide range of application areas where

sensors needs to be connected; however, for the sake of illus-
tration, the examples presented here are framed in a smart
home setting.

By using virtualized sensors, third-party developers do not
need to learn any custom sensor APIs to interact with the
sensors, even though the capabilities of the sensors are lim-
ited to low-level RF communication. Assuming sensor ven-
dors provide the sensor communication API, third-party de-
velopers can supply the necessary custom wrappers for the
middleware to use, or vendors can provide such wrappers.
Virtual sensors gives flexibility to applications, since replac-
ing sensor devices does not require modifying the implemen-
tation of applications using those sensors. This is assuming
the basic interaction is the same or similar. Furthermore,
with technology innovation, new sensor models may natively
support Zeroconf and link-local IP addressing. Applications
can then use these with minimal changes, bypassing the vir-
tual sensors.

In previous work, Construct [14] offers a distributed mid-
dleware for pervasive systems and provides mechanisms for
capturing sensor data and converting them into RDF for-
mated data for storage. Construct employs Zeroconf to lo-
cate services, but does not allow discovery of sensor devices
as in our middleware. In BOSS [10], a bridging architecture
implemented in a base station is used to enable sensor ac-
cess through the use of UPnP protocols. Our approach to
virtualizing sensors based on Zeroconf is more lightweight
and allows better application level adaptation.

The rest of this paper is organized as follows: Section 2
presents the background for the paper and state our assump-
tions. Section 3 presents the architecture of our middleware
for virtualized sensors, and Section 4 provide some relevant
implementation details. In Section 5 related research is dis-
cussed, and Section 6 concludes the paper.

2. BACKGROUND AND ASSUMPTIONS

The sensor virtualization middleware presented in this paper
is part of the IS-home project [13], a larger effort aimed at
offering an autonomic communication middleware platform
to simplify development and deployment of integrated and
context-aware services in a smart home environment. The
middleware focuses on self-healing, and self-configuration
mechanisms as discussed in this paper. It also offers sup-
port for developing integrated services, where multiple ser-
vices can interact to offer synergies across different tech-
nologies, e.g. a light-control service could interact with the
movement sensors associated with the alarm service to de-
cide wether or not the light should be turned on or off.
Context-awareness is currently supported by means of loca-
tion awareness through both GPS and WiFi signal strength.
These features are being used to as a means to activate and
deactivate the burglar alarm in the home [16] based on the
location of mobile phones associated with the household.

In the context of the IS-home project, we assume a net-
worked device capable of running our middleware; typically
this will be a simple embedded computer running the Linux
operating system. Further, we assume the computer has
multiple interconnection interfaces, e.g. ZigBee, Bluetooth,
WiFi, GPRS, Ethernet and USB ports for connecting alter-

native network devices. This computer may run one or more
network services, and may act as a gateway between differ-
ent network applications and devices. A network service is
a software component that may interact with other network
services, to issue commands to sensors and actuators or to
simply receive a data stream from sensors.

Zeroconf is an essential component in our middleware archi-
tecture; sensors and other network devices will be registered
with and discoverable through Zeroconf. Hence, an overview
of Zeroconf is given below.

2.1 Zero Configuration Networking

Zero configuration networking is endorsed by the Internet
Engineering Task Force (IETF) [11], through various RFCs.
There are several implementations of Zeroconf for different
platforms, e.g. Bonjour for Mac and Windows and Avahi
for Linux. Zeroconf has become a widespread protocol for
automatically discovering external devices such as printers,
cameras and iPods to communicate over an IP network. The
protocol was designed for use in small (less than 1000 clients)
local networks. In order to achieve automatic configuration
of network devices, Zeroconf automates three core services:
IP addressing, name resolution and service discovery [5]. In
other words, IP addresses will need to be assigned automat-
ically to each device and coupled with a meaningful name,
and services have to be discovered automatically as they
enter the network. This is achieved with the following com-
bination of techniques [5]:

e Link-local addressing Used to assign IPv4 addresses
without relying on a DCHP server present on the net-
work: The device picks an IP address from the reserved
local private range of 169.254.x.x at random and sends
some ARP requests, asking for the owner. If no reply is
received, the device answers its own request, claiming
the ownership itself.

o Multicast DNS (mDNS) The reason for binding a name
to the IP address is that IP addresses are impractical
and difficult for humans to relate to, especially when
picked randomly and often changing, as is the case with
link-local addressing. The principle behind mDNS is
the same: Basically, the device sends a few mDNS
queries for a self-assigned name, and takes ownership
if no other device answers. mDNS is used to provide
name binding without a DNS server present.

e DNS Service Discovery (DNSSD) Enable users to browse
for services without having to know anything about the
hosts providing them. It builds on existing standard
DNS queries and resource types and provides service
discovery without a centralized directory service. In-
stead each Zeroconf enabled device maintains its own
directory of services, as shown in Figure 1.

The philosophy behind the Zeroconf platform is rooted in
the assumption that end users are interested in services, not
devices. The goal is that users should be able to select ser-
vices from a list through a graphical user interface. Figure 1
illustrates a Zeroconf-enabled home network, where a laptop
running iTunes software, a printer, a webcam, an iPhone and

. Sensors .
“'8ensor T

] e
: Virtualization ;
. Middleware

iTunes
[_daap._tcpl

iCalendar
[_ical._tcpl

Bl | -

videostream

[_rtsp._udpl

W

—p
[————) printserver
[ONSSD] ps. tcp)

Figure 1: Zeroconf-enabled home network

sensors can access each others services. Services are adver-
tised in the format <Name> < Type> <Domain> <Port>,
where < Name> is the user-friendly name of the service, and
< Type> is the service type. The webcam, for instance, will
advertise its service as

"videostream" _rtsp._tcp local 554

indicating that it offers a video stream over the RTSP pro-
tocol on TCP port 554. Each device has its own DNSSD
instance, keeping a list of available services. In the illus-
tration, our middleware resides between the sensors and the
rest of the network, as most sensor nodes does not have suffi-
cient resources available to run their own DNSSD instances.

The list of services is kept up to date in a distributed and
thought-out manner, using a combination of the following
techniques to keep track of available services present on the
network:

e Clients refreshes their local lists at irregular intervals,
often as infrequent as once an hour, to keep network
strain low.

e At startup, new services sends a few Multicast DNS
packets, notifying all clients on the network of their
presence.

e When services leave gracefully, they send a Multicast
DNS goodbye message or use DNS Dynamic Update
to remove its information from the Unicast server.

e If a service crashes, loses its network connection or in
some other way leaves without being able to inform the
network, the service stays in the clients lists until the
next time a client refreshes its list, or tries to access
the service, in which case the client removes the service
from the list and informs the other clients.

Combined, these methods prevents the network from being
flooded with control traffic.

3. ARCHITECTURE OVERVIEW

The middleware architecture is organized into multiple lay-
ers of abstraction to provide sensor-based services to exter-
nal applications. That is, physical sensors appears to behave
as if they provide Zeroconf-like services, denoted virtual ser-
vices herein. Hence, the services provided to applications
become independent of the sensor hardware used. Figure 2
shows a simplified overview of the platform, and its contex-
tual place in the service architecture of a smart home.

Physical sensor

Protocol
Adapter

External
Application

\ i

(Zeroconf)

Figure 2: Middleware architecture

The middleware takes advantage of standardized Zeroconf
protocols to provide automatic network configuration of sen-
sors and service discovery to external applications, which
makes the sensor services available to any Zeroconf-enabled
application on the same network.

The main components of the middleware are:

e The Service Factory listens on the network for new
sensor devices, and creates virtual representations of
these.

e The Virtual Sensor communicates directly with the
sensor nodes, and keeps track of connectivity. It trans-
lates application commands received through the pro-
tocol adapter and forwards it to the physical sensor,
using the native communication protocol of the sensor.

e A Virtual Service represent a service provided by a
sensor. It registers the communication endpoint (host-
name and port number) of the service with Zeroconf
and listens for connection requests from external ap-
plications. Upon receiving a connection request, the
virtual service creates a protocol adapter to handle the
communication with the application.

e Applications communicate with sensors through Pro-
tocol Adapters. They provide a standardized com-
munications interface independent of the kind of sensor
involved in the communication, and are generic for all
virtual services. Once the application has established
a connection with the protocol adapter, the adapter
communicates directly with the virtual sensor. Com-
munication from a sensor to external applications is
done in the exact same manner, but in the reverse or-

der.

The Service Factory and Virtual Sensor are the only com-
ponents in our architecture that needs customization. That
is, they are both comprised of a generic part, and a custom
part that needs to be tailored specifically for each supported
sensor type.

‘ Physical sensors .

Sensor ;irotocol (ZigBee, Bluetooth, etc)

Sensor Virtualization Middleware

Virtual
Service

-3 00N0O0-MmN :

External External External
Application Application,

Application

Figure 3: Detailed middleware architecture

Keeping in line with the service-oriented philosophy of Ze-
roconf, our middleware separates the services from the sen-
sors. This appears to be the most flexible solution because
it allows the system to support more than one service per
sensor, e.g. a single sensor may provide both temperature
and humidity services.

An alternative approach could be to have multiple services
associated with a single Virtual Sensor, but that would clut-
ter the architecture, making the virtual services less generic
and requiring more logic to be added to the virtual sensor.

Another alternative approach could be to create one virtual
sensor per service, making the system act as multiple ser-
vices hosted by a single sensor are all hosted by different
nodes. However, this solution appears somewhat messy. It
would also require added logic to the Virtual Sensor as well
as to the Service Factory, and it would not be a true rep-
resentation of the physical reality, potentially causing prob-

lems with application logic further down the chain of devel-
opment.

Having the virtual services separated from the virtual sen-
sors allows the virtual service component to be generic for all
supported sensor types. In addition, this approach is a good
match with the Zeroconf APIs, as the methods provided by
these are geared towards services instead of devices.

Figure 3 show a more detailed view of the system. Each
physical sensor is represented by a corresponding virtual
sensor. Furthermore, each service offered by the sensor is
represented with a virtual service. A virtual sensor can have
many services, e.g. if the same physical sensor device is a
multi-sensor device, the different sensor readings can be of-
fered to applications through distinct virtual services. A
virtual service can also have many connections through dif-
ferent protocol adapters. For example, multiple services for
the same sensor can be registered with Zeroconf at the same
time, one accessible over TCP and another over SOAP.

External applications use Zeroconf to identify and locate
virtual services provided by sensors, and communicates with
them through the protocol adapter. An application can be
composed of one or more services, but only needs one socket
per service.

3.1 Adding New Sensor Types

Adding support for new types of sensors involves developing
device-specific versions of the Service Factory and Virtual
Sensor. In order to simplify development, the middleware
comes with abstract versions of these components, allowing
implementations to reuse common functionality, effectively
giving developers a blueprint of the required classes.

Essentially, the custom part of the service factory needs code
for detecting connection requests from the physical sensors
and for creating the appropriate virtual sensor. Obviously,
the virtual sensor must also be able to communicate natively
with the physical sensors.

3.2 Adding New Communication Protocols
The protocol adapter is a generic communication interface
through which external applications connect. Different ap-
plications might require different communication protocols,
and the middleware supports adding new protocol adapters.
Currently, a TCP-based protocol adapter is supported, yet
support for UDP, HTTP, SOAP and RMI can easily be
added, as shown in Figure 4. Once an adapter has been
developed, it can be reused without modification for all sen-
sor types supported by the middleware. In addition to mak-
ing the middleware flexible, this ensures future compatibility
with new protocols as they emerge.

4. IMPLEMENTATION DETAILS

Our sensor virtualization middleware is written in Java, with
the core components represented in the classes ServiceFac-
tory, Sensor, Service, TCPSocketAdapter and RegisterDNSSD.

The ServiceFactory maintains a list of sensors that the mid-
dleware is capable of communicating with. As the sequence
diagram in Figure 5 illustrates, the ServiceFactory listens for

‘ : Ext app ‘ ‘ : Sensor node‘ ‘ : Service factory‘ ‘ : Virtual sensor‘ ‘ : Virtual service H : RegisterDNSSD ‘ ‘ : Zeroconf H : TCP socket adapter

: listen()

1]

: service advertisement

]

: connect to sensor()

9: Browse for services

: new(this, sensorld, serviceName, pratocol, port)

: new(this, serviceName)

1]

: new(serviceName, domain, protocol, port)

1

: register()

: listen for connection request()

]

: (host, port)

: connection request

: (socket)

s new()

Figure 5: Service discovery and connection establishment

Virtual
Service

External
Application

Figure 4: Protocol adapter

External
Application

service advertisements broadcast by sensors in the network.
When a broadcast is received, the ServiceFactory first checks
if it already has the source sensor in its list. uses its “cre-
ate new service”-method, giving the sensor a new Service
in its list of available services. If it does not recognize the
sensor that sent the advertisement, it creates a new Sensor,
using a constructor that takes service name as argument.
The Sensor constructor sets up one-to-one communication
with the physical sensor and then creates a service. The
VirtualService registers itself with Zeroconf. This is done us-

ing the RegisterDNSSD class, which implements classes from
Apple’s Bonjour API.

After the service has been registered with Zeroconf, it lis-
tens for socket requests on the corresponding TCP port, and
spawns a T CPSocketAdapter, thread for each connection re-
quest.

External applications can multicast a DNSSD request for
available services that resides on the same network and the
Zeroconf framework will reply with the name of the host on
which the virtual service is running, and the port number to
connect to. An application can then use this information to
send a connection request that will be handled by the virtual
service, and get a TCP socket in return. Commands received
by the TCP socket adapter is forwarded to the virtual sensor,
which translates these into the appropriate sensor-specific
command, which, in turn, is transmitted to the physical
sensor, using the device’s native communication protocol.

Each virtual sensor keeps track of the state of its associated
physical sensor. A sensor is considered to have failed if an
IOException is caught, e.g. due to a communications failure,
or the ping timeout has expired. A random ping timeout
is used with an interval t,ing € [10,60] seconds. If a sensor
fails, the virtual sensor is responsible for unregistering the
service from Zeroconf, removing itself from the list of sensors
maintained by the ServiceFactory, and terminate. Similarly,
if an I0Exception is caught when external applications are
trying to access the sensor, the virtual service will be unreg-

istered and terminated.

To demonstrate the capabilities of our middleware, we have
developed a simple temperature reading application. The
application uses programmable sensors from Sun Microsys-
tems, called SPOTs (Small Programmable Object Technol-
ogy). These are Java ME programmable sensors that comes
with built in temperature detectors and accelerometers. We
have implemented the SPOTs as virtual sensors and their
temperature detectors as virtual services.

Communication is done with the wireless IEEE 802.15.4
standard, which uses the 2.4GHz band and is the standard
the ZigBee protocol is built on top of. Since these partic-
ular sensors are programmable, they can be made to re-
spond to any command we choose. In this case, an interface
taken from the demonstration applications that came with
the SPOT software development kit was modified to suit
our application. The interface simply maps enums to bytes,
and is implemented by both the client class running on the
physical sensor and the virtual sensor class running within
the middleware. The main reason for mapping enums to
bytes in this manner is to improve the readability of the
application code, and to conserve power when transmitting
data (byte values are much smaller to transmit and easier
to process than strings).

Smartphone SPOT Sensors
o o
. - 802.15.4

. SPOT Basestation

\

Application Sensor

Middleware

Figure 6: Demonstration implementation

In addition to the middleware, the implementation consists
of the following applications:

e The Simple Sensor Client runs on the SPOTs and
communicates wirelessly with the middleware over IEEE
802.15.4 using a base station that is connected to the
host computer via USB. It is a multithreaded appli-
cation that supports both broadcast and unicast over
the SPOT specific Datagram protocol. As mentioned,
it implements the Packet Types interface, so that when
receiving a byte value of 11 for instance, it knows that
this is a temperature request.

e Running on an Apache Tomcat J2EE application server,
the Service Browser application allows the user to

browse for services and request values from these through

a web browser. It uses the provided functions of Apples

Bonjour API to browse and resolve services without re-
quiring the user to perform any network configuration.
The Apache Struts presentation framework is used to
generate the web pages.

Using a class that implements the BrowseListener interface
from the Zeroconf Java API allows the service browser appli-
cation to find services on the network with very little code.
The constructor:

new BrowseDNSSD("_ishome._tcp");

starts a thread that finds services of type _ishome that
speaks TCP and keeps the application updated with any
changes. When the user clicks on a service, displayed as a
link on the webpage, the following method call is made:

DNSSD.resolve (0, DNSSD.ALL_INTERFACES, name,
"_ishome._udp", domain, this);

The call returns service name, host name and port, and using
this information, the application can create a TCP socket
to the virtual service, which is listening on the advertised
port. Once connection is established, the application can
issue commands and get value readouts from the physical
Sensor.

Although we have used a J2EE application server to do the
service browsing in our demonstrator, it could just as well
be performed by an applet running on a smartphone. While
Figure 6 only shows one service browsing application, a real-
world smart home scenario is likely to have a number of ap-
plications browsing for services using the Zeroconf protocol.

S. RELATED WORK

Zeroconf is not the only protocol providing service discovery
and automatic network configuration: Some protocols, like
Jini, are solutions to specific problems, while others, such as
Construct [14, 6] provides a complete platform for develop-
ing pervasive applications.

Service Location Protocol (SLP) is an IETF proposed
standard, and is supported by some of the largest indus-
try actors, including Hewlett Packard, IBM, Sun Microsys-
tems and Apple [2]. Apple did, however, replace SLP with
DNSSD and mDNS as the preferred zeroconf protocol be-
tween Mac OS X 10.1 and 10.2, which makes the technology
somewhat obsolete.

Jini is SUN’s take on service handling, and as such, it is
Java-based. Theoretically, any communication protocol that
supports serialization of objects could be used, but since
Jini is built on top of Remote Method Invocation (RMI),
it is not practical to use other protocols. Jini systems are
divided into Service, Lookup Service and Client components.
Although SUN maintains that it is platform independent,
only Java is used in practice [3]. It needs to run within a Java
Virtual Machine (JVM), and it is rather heavyweight. Even
though it supports the Java 2 Micro Edition (J2ME) virtual

machine, clients need to be able to dynamically download
and execute Java classes, and small devices running J2ME
typically does not have the processing power and resources
to do this [7]. This can be worked around by including a
proxy that executes the code and presents the data to the
client through a servlet [15], but it nonetheless complicates
matters.

Universal Plug and Play (UPnP) have many of the
same objectives as Zeroconf, but while Zeroconf is a three
layered foundation for automatic device configuration, UPnP
is an organization, maintaining an open-ended collection of
device specific protocols [4]. Whenever a new device type
appears on the market, the UPnP forum creates a working
group to develop a protocol for that particular type of de-
vice. The application protocols is built on top of standard
internet protocols such as IP, TCP, UDP, SOAP/XML and
HTTP to ensure platform independence.

UPnP offers automatic addressing, service discovery, and
comes with protocols for controlling sensors and actuators.

A key difference between UPnP and Zeroconf is that while
the UPnP organization is focusing mainly on application
protocols without paying very much attention to the under-
lying layers, Zeroconf provides the underlying communica-
tion layers, but leaves it up to the developer to decide how
the application protocol for a specific device is going to be
implemented.

IP addressing is achieved in exactly the same manner as
Zeroconf, using IPv4 link-local addressing. Unlike Zeroconf
which have mDNS, UPnP does not handle name resolution
and thus requires a DNS server present on the network to
provide this. According to the UPnP Device Architecture
definition [9], most often UPnP-enabled devices only provide
URLs using numeric IP addresses.

UPnP-enabled components are either devices, hosting ser-
vices, or control points, controlling devices.

For use in smart home applications UPnP does have some
disadvantages: For one, UPnP use heavyweight SOAP XML
objects over HTTP for communication, requiring an XML
parser on both ends and at the same time increasing process-
ing and bandwidth usage. Zerconf, on the other hand, uses
standard DNS packets to advertise services, which are much
smaller in comparison. Another problem with the UPnP
protocol is its inherent chattiness; Its Simple Service Dis-
covery Protocol (SSDP) was built on an IEFT draft which
was abandoned in 1999, partly because the working commit-
tee recognized that the network would become flooded with
control traffic in a setting with more than ten SSDP devices
communicating. Another obstacle is that UPnP does not
include support for prolonged periods of the network link
being down, which is a likely occurrence in the noisy envi-
ronment of a sensor-driven smart home.

Construct has many similarities with our middleware in
that it is a distributed middleware for pervasive systems
that provides an abstraction from the various protocols and
data formats of sensors, actuators and other information de-
vices. Like our middleware it is mainly written in Java and

employs Zeroconf to locate services. Construct provides the
following five core services: Discovery, Management, Sens-
ing, Actuation and Distribution. Data is exchanged be-
tween system components in Resource Description Frame-
work (RDF) format, which is the World Wide Web Con-
sortium (W3C) metadata language that the Web Ontology
Language (OWL) [17] language is built upon.

While our focus is on finding a standardized way for ap-
plications to communicate with sensors, the main focus of
Construct appears to be on data capture and processing of
information. In Construct, captured data are converted into
RDF format and put in a distributed data store, accessible
to other applications via the SPARQL query language or
RDF over a TCP socket or via HT'TP. Jena, a semantic web
framework for Java is used to process the information.

Bridge Of the SensorS (BOSS) [10] is a middleware for
UPnP enabling sensors that does not support the UPnP
protocols. It achieves this by implementing a bridge in the
base station that resides between the sensors and the ap-
plications that translates UPnP commands into the sensors
native format. This approach have some similarities with
our own, but instead of virtualizing the sensors, it provides
a translation of commands.

Open Services Gateway initiative (OSGi) [1] provides
a gateway for connecting different devices and services to-
gether through a central point, allowing applications to be
composed from different, reusable service modules [8]. The
framework is module based and written in Java. It only
specifies the application programming interface, not the un-
derlying implementation, leaving it up to the developers to
handle the actual communication with the devices of a smart
home.

SOCAM (acronym for Service-Oriented Context-Aware Mid-
dleware) is built on top of OSGi, and brings context-awareness
to the table. The authors of the project has developed a con-
text model that allows contexts occurring in a physical space
to be converted into semantic data using OWL to represent
their context ontologies.

6. CONCLUSIONS AND FUTURE WORK

By virtualizing the physical sensors in smart homes, we can
provide external applications with a uniform communication
interface. For a smart home to appear as seamless as possible
to its inhabitants, it is important that the configuration of
services and devices are handled in a manner that requires
minimal user interaction. We have demonstrated how the
important task of automating the discovery of services and
devices as well as the networking between applications can
be solved using Zeroconf.

While the middleware presented here makes the communi-
cation protocol between sensors and application generic, the
application protocol is not. By implementing an ontology
built with OWL, the application protocol could be made
generic and platform independent as well. We also intend
to expand our application to include support for other types
of sensors beyond the Sun SPOTs supported in the current
implementation.

Some utility services such as alarm and health services would
greatly benefit from the middleware having autonomic com-
puting [12] attributes such as self-healing and self-protection.
These features could ensure the safety of heart patients un-
der remote surveillance from the hospital where the success-
ful transmission of monitored data is of great importance.
Self-protecting and self-healing attributes of the middleware
could also protect alarm systems from Denial of Service
(DoS) attacks like network flooding or jamming.

Enabling remote access to the services in the home over wide
area networks such as the Internet or GPRS can be useful for
tasks like adjusting the heat before coming home, or turning
off the alarm to let someone in when one is away. Remote
accessibility brings up some security and privacy concerns
that needs to be addressed by the middleware as well as
the applications at some point. The drawback of exposing
services on the network to enable synergies between appli-
cations is that they may be visible to malevolent outsiders.
End users needs to be confident that their privacy and se-
curity is not compromised by the openness of their smart
home.

7. REFERENCES

[1] OSGi Alliance. The osgi architecture. Accessed
15.02.20009.

[2] Ilkka Karvinen Bilhanan Silverajan, Jaakko Kalliosalo.
Using ietf service discovery methods in ipv6 and
middleware platforms and implementing slpv2 for
ipv6. In EUNICE 2003. 2003.

[3] Blerta Bishaj. Comparison of service discovery
protocols, 2007.

[4] Stuart Chesire. How does zeroconf compare with
viiv/dlna/dhwg/upnp?

[5] Stuart Chesire and Daniel H. Steinberg. Zero
Configuration Networking - The Definitive Guide.
O’Reilly, 2006.

[6] Lorcan Coyle, Steve Neely, Graeme Stevenson, Mark
Sullivan, Simon Dobson, and Paddy Nixon. Sensor
fusion-based middleware for smart homes. pages
53-60. International Journal of Assistive Robotics and
Mechatronics (IJARM), 2007.

[7] Ron Dearing. J2me clients with jini services, 2003.

[8] Pavlin Dobrev, David Famolari, Christian Kurzke, and
Brent A Miller. Device and service discovery in home
networks with osgi. In IEEE Communications
Magazine o August 2002, pages 86-92. IEEE, 2002.

[9] UPnP Forum. Upnp device architecture 1.0, 2008.

[10] Kangwoo Lee Jongwoo Sung Hyungjoo Song,
Daeyoung Kim. Upnp-based sensor network
management architecture. In Second International
Conference on Mobile Computing and Ubiquitous
Networking (ICMU 2005). 2005.

[11] IETF. Internet engineering taskforce.

http://www.ietf.org/.

Richard Murch. Autonomic Computing. On Demand

Series. IBM Press, 2004.

[13] Chunming Rong, Hein Meling, and Dagfinn Wage.
Towards integrated services for health monitoring. In
First International Workshop on Smart Homes for
Tele-Health, Niagara Falls, Canada, May 2007.

[14] Lorcan Coyle Steve Neely Graeme Stevenson

12

(15]

(16]

(17]

Simon Dobson, Paddy Nixon and Graham Williamson.
Construct: An open source pervasive systems
platform. In Consumer Communications and
Networking Conference, 2007. CCNC 2007. 2007 4th
IEEE, pages 1203-1204. IEEE, 2007.

Inc. SYS-CON Media. J2me clients with jini services.
http://www2.sys-
con.com/itsg/virtualcd/Java/archives/0806 /patil/index.html,
2004.

Jan Magne Tjensvold. Mobile Control System for
Location Based Alarm Activation. Master’s thesis,
Dept. of Electrical Engineering and Computer Science,
University of Stavanger, June 2008.

W3C. Web ontology language.
http://www.w3.org/TR/owl-features/.

