
Non-hierarchical Dynamic Protocol Composition in Jgroup/ARM

Hein Meling
hein.meling@uis.no

Department of Electrical and Computer Engineering
University of Stavanger, 4036 Stavanger, Norway

Abstract

Protocol composition is a common approach to structure generic protocols used by networked
applications, and typically a vertically layered approach is taken. This paper presents an alternative
approach, where the protocol composition is a weakly-coupled set of protocol modules organized in a
non-hierarchical structure. Protocol modules are dynamically constructed at runtime. The approach is
designed for systems that involves multiple communicating entities and multicast style interactions are
supported, making the approach suitable for building reliable network applications. The main advantage
of the approach is that modules in the same composition communicate by direct interaction, whereas
other frameworks typically use a vertically layered protocol stack, forcing all messages/events to pass
through all intermediate layers introducing unnecessary delays.

1 Introduction

Networked computer systems are prevalent in most aspects of modern society, and we have become
dependent on such computer systems to perform many critical tasks. Moreover, making such systems
dependable is an important goal. Yet, dependability issues are often neglected when building systems
due to the complexities of the techniques involved. Modularization is a well-known principle for
simplifying complex systems. Furthermore, a common technique used to improve the dependability
characteristics of systems is to replicate critical system components whereby the functions they perform
are repeated by multiple replicas. Replicas are often distributed geographically and connected through a
network as a means to render the failure of one replica independent of the others.

This paper presents the design and implementation of a protocol composition framework for the
Jgroup/ARM middleware platform [8, 11]. Jgroup/ARM is a middleware framework for developing
and operating dependable distributed applications based on Java. Jgroup [11] integrates the distributed
object model of Java remote method invocations (RMI) with the object group communication paradigm,
enabling the construction of groups of replicated server objects that provide dependable services
to clients. The Autonomous Replication Management (ARM) framework [8] provides automated
mechanisms for distributing replicas to host processors and recovering from replica failures.

This paper was presented at the NIK-2006 conference; see http://www.nik.no/.



The Jgroup/ARM middleware platform is aimed at simplifying the development of dependable
network information services. One part of this simplification is accomplished through modularization of
generic protocol modules and composing them into complete protocol stack. Protocols in Jgroup/ARM
usually involves multiple communicating entities, i.e. all members of a replicated object group, and
specialized multicast interactions are supported for interactions with peers in the same group. Protocol
modules in the same composition communicate by direct interaction. Using this framework, a
dependable service can easily construct and configure its own protocol composition dynamically at
deployment time. Each protocol module in the composition can be parametrized according to the
dependability requirements of the service. Adding new protocols to the system is also very easy.

The paper is organized as follows: Section 2 discuss previous works on protocol architectures
and relate these to the approach taken by Jgroup/ARM. Section 3 briefly presents the Jgroup/ARM
middleware. Section 4 introduces the concepts on which the protocol composition framework is based,
and illustrate a sample protocol stack. Section 5 details the various ways in which protocol modules can
communicate, both internally and externally. Finally, in Section 6 the dynamic composition of protocol
modules is discussed and Section 7 concludes the paper.

2 Introduction to Protocol Architectures

Protocol composition is traditionally based on layered protocol stacks. However, in the last decade,
micro-protocols have become increasingly popular, as they enable a more flexible approach to protocol
composition. To accomplish this, micro-protocol frameworks restrict their protocol layers to follow
a specific model, rather than building protocols in an ad hoc manner. These restrictions include: the
protocol layers have to communicate using events that travel up or down the protocol stack, and that the
layers cannot share any state. This way protocols become more maintainable and configurable as new
protocols can easily be added to the system. The cost however, is reduced performance.

Micro-protocols were first introduced in the x-kernel [7], and have since been used in a variety of
systems, including group communication systems such as Ensemble [5], Horus [16], JavaGroups [3],
Cactus [6] and Appia [10]. Ensemble, Horus, JavaGroups and Appia [5, 16, 3, 10] follow a strictly
vertical stack composition, where events must pass through all layers in the stack. In the Horus
system, a protocol accelerator [15] implements optimizations that reduce the effects of protocol layering.
The limitation of these optimization techniques is that the set of protocols to be bypassed must be
well-defined, and the optimizations were hand-coded into the protocol stack. Thus, it reduces the
configurability of the micro-protocol framework. Similar optimizations are also feasible with the
Ensemble system [5]. Both Appia [10] and JavaGroups [3] are also based on micro-protocols in its
purest form, since none of the optimizations implemented in Horus and Ensemble are available. That
means that every event has to pass through all intermediate layers, even though the event is not being
processed by all of the layers. The Cactus [6] micro-protocol framework is conceptually similar to the
protocol composition framework discussed in this paper. Each layer has to register its interest in the
events of other layers, and protocols can be constructed according to formal rules, such as a dependency
graph. Thus, such a protocol stack does not follow a strict vertical composition. An advantage of the
Jgroup protocol framework over JavaGroups, Appia and the Cactus system is type-safety. Events are
passed by means of method calls on a set of well-defined interfaces for the various modules (layers),
whereas other systems have to implement a common handler method in each layer which takes care of
demultiplexing the received events based on the type of the events. In Jgroup, events are passed directly



to the appropriate event handler. Another advantage of Jgroup over the Cactus system is the possibility
to specify interception rules, enabling a module to delay and/or modify events from another module. The
SAMOA [12] framework is also conceptually similar to the approach in this paper. The main differences
are that SAMOA supports concurrency and asynchronous stack internal interactions, whereas Jgroup
uses synchronous interactions and leaves concurrency a non-framework issue. Synchronous interaction
is a simpler approach, and makes it easier for developers to write protocol modules. Both the Neko [14]
protocol prototyping framework and Jgroup/ARM uses an approach based on dependency injection [4].

3 The Jgroup/ARM Middleware

Jgroup/ARM [8, 2, 11] integrates the Java RMI distributed object models with the group communication
paradigm and autonomous fault treatment. Jgroup provides three core services aimed at simplifying
coordination among replicas: a partition-aware group membership service (PGMS), a group method
invocation service (GMIS) and a state merging service (SMS) [11].

The task of the PGMS is to provide servers
G

ro
up

 M
an

ag
er

PGMS

SMSGMIS

Server Client

Group
proxy

Jgroup Daemon

Network

Figure 1. Overview of Jgroup services.

with a consistent view of the group’s current
membership, to enable server coordination.
Reliable communication between clients and
the object group take the form of group method
invocations (GMI), that result in methods being
executed by the servers in the group. To
clients, GMI interactions are indistinguishable
from standard Java RMI: clients interact with
the group through a group proxy that acts as
a representative object for the group, hiding
its composition. The group proxy maintains
information about the servers composing the
group, and handle invocations on behalf of
clients by establishing communication with one
or more servers and returning the result to the
invoker. This form of GMI is called External
GMI (EGMI). On the server side, the GMIS enforce reliable communication among replicas within
the group and are called Internal GMI (IGMI). Finally, the task of SMS is to support developers in
re-establishing a global shared state when two or more partitions merge after a network partition.

Figure 1 gives a high-level overview of the composition of the core Jgroup services. The main
component of Jgroup is the Jgroup daemon; it implements basic group communication services such
as failure detection, group membership and reliable communication. Server replicas must connect to a
Jgroup daemon to access to the group communication services. Each server replica is associated with a
group manager (GM), whose task is to act as an interface between the Jgroup daemon and the replica.

The ARM framework [8] provides mechanisms for automated fault treatment and management
activities such as distributing replicas on sites and nodes, and recovering from failures, reducing the need
for human intervention. These mechanisms are essential to operate a system with strict dependability
requirements, and are largely missing from existing group communication systems [11, 10, 3]. Much of
the ARM functionality is implemented by separate protocol modules integrated into the GM component.



4 Protocol Modules

The group manager (GM) is the glue between an application and the core group communication services;
it encapsulates all protocol modules associated with the application. It allows the application to interface
with the various Jgroup services to perform group-specific tasks. The GM is based on an event-driven
non-hierarchical composition model1, and consists of a set of weakly coupled protocol modules. Each
protocol module implements a group-specific function, which may require the collaboration of all group
members, e.g. the membership service (PGMS). In fact, all the basic Jgroup services discussed in
Section 3 and several other generic group-specific functions are implemented as GM protocol modules.

The advantages of a non-hierarchical set of protocol modules over a strictly vertically layered
architecture, as used in many other group communication systems (e.g. [16, 5, 3, 10]), is that events
being passed from one layer (module) does not have to be processed by any intermediate layers. Events
can simply be passed from one module to another without any processing delay and addition/removal
of header fields, thus also reducing the complexity of implementing a module. Our approach is also
flexible in that a module can intercept commands/events from another module, delay and/or modify
them, before delivery to the destination module. Interception rules are specified inline in the modules
using annotations, and the corresponding implementations must adhere to these rules.

Protocol modules communicate with the application, or other modules, by means of commands
(downcalls) and events (upcalls) through a set of well-defined interfaces. Typically, a module provides a
set of services to other modules and/or the application, and requires another set of services from other
modules to perform its services. A module may also substitute the services provided by another module,
by intercepting, delaying and/or modifying the commands/events passed on to the substituted module.

Each module implements one or more well-defined service interfaces, through which the module can
be controlled, and it may also generate events to listening modules (or the application) through one
or more listener interfaces. Usually, a module implements one service interface and provide events to
other modules through one listener interface. As an example, consider the MembershipModule which is
defined by the MembershipService and MembershipListener interfaces, shown in Figure 2. Servers can
access the service interfaces of protocol modules by querying the GM. However, to be notified of events
generated by a module, a server only needs to implement the module’s listener interface.

The set of GM protocol modules required by an application is configured through the ARM policy
management [8]. Based on this configuration, the protocol modules are constructed dynamically at
runtime. The advantage of dynamic construction is that it enables developers to easily build generic
group-specific functions and augment the system with new modules without having to recompile the
complete framework. There is no strict ordering in which the modules have to be constructed, except
that the set of required modules must have been constructed a priori. During construction, each module
is checked for structural correctness, and required modules are constructed on-demand.

Figure 2 illustrates a protocol composition containing the basic Jgroup services, except the
GMIS. For readability only the most important commands/events are shown in the interfaces. The
DispatcherModule is responsible for queuing and dispatching events to/from the daemon, and is the
interface between the GM protocol modules and the daemon. The MulticastModule implements the
MulticastService through which other modules (and the server) can send multicast messages to the
group members. To receive messages, a module must implement the MulticastListener interface. The
main task of the MulticastModule is to multiplex and demultiplex messages to/from the internal modules

1In [9] this is called cooperative composition.



or the server. The actual low-level IP multicast is performed by the daemon. Other modules (or the
server) can join() or leave() a group by invoking the MembershipService interface, which is implemented
by the MembershipModule. Variations in the group membership are reported through viewChange()
events. Any number of modules, and the server, may register its interest in such events simply by
implementing the MembershipListener interface. The MembershipModule mainly keeps track of various
state information and provides an interface to the PGMS, whereas the view agreement protocol [11]
is implemented in the daemon. The DispatcherModule, MulticastModule and MembershipModule are
mandatory, and must always be included for any sensible group communication support.

Server Replica

G
ro

up
 M

an
ag

er

StateMergeModule

MembershipModule

MulticastModule

DispatcherModule

MembershipService

MembershipService

MulticastService

DispatcherService

MembershipListener StateMergeListener

MembershipListener MulticastListener

DispatcherListener

DispatcherListener

StateMergeService

RemoteDispatcher

join(group) leave()

join(group) leave()

mcast(stream)
viewChange(view)

viewChange(view) getState()putState(state)

deliverStream(stream)

notify(event)

notify(event)

Daemon

notify(event)

DaemonDispatcher

dispatch(event)LegendLegend
Remote method invoc.
Local invocation

dispatch(event)dispatch(event)

isMember()

Figure 2. A sample group manager composition with the basic Jgroup services.

Note that the StateMergeModule also implements the MembershipService interface, and provides
events through the MembershipListener interface. This is since the StateMergeModule substitutes the
membership service by intercepting and delaying the delivery of viewChange() events to the server
until after the state has been merged. The main task of the StateMergeModule is to drive the state
reconciliation protocol by calling getState() and putState() on the StateMergeListener interface to obtain
and merge the state of server replicas. It also handles coordinator election and information diffusion.
State reconciliation is only activated when needed, i.e. in response to viewChange() events generated
by the MembershipModule. Hence, the StateMergeService interface (dashed box) does not provide
commands as a means for activating it. As Figure 2 illustrates, the StateMergeModule requires both the
MembershipModule and the MulticastModule, and substitutes the MembershipModule.



5 Module Interactions

Protocol modules may interact in a number of different ways, both with external entities and other
protocol modules. Hence, to construct the protocol modules dynamically, it is necessary to understand
how the modules can interact so as to dynamically establish the necessary links between them.

Figure 3 illustrates inter-module

Server to module interaction

Local inter−module interaction

Remote inter−module interaction

G
roup M

anager

Server Replica 1 Server Replica 2

G
ro

up
 M

an
ag

er

Legend:

Module Y

Module X

Module ZModule Z

Module Y

Module X

Figure 3. Inter-module and server-to-module interactions.

and server-to-module interactions.
Inter-module interactions may occur
both within the same GM, and also
across distinct GMs. Mostly, only
GMs that belong to the same group
needs to communicate. GMs belong-
ing to the same group should be com-
posed of an identical set of protocol
modules. The arrows in Figure 3 rep-
resents a may communicate relation.
That is, a module may or may not
communicate with another module in
one or both directions. The servers
may also interact directly with one or more of the modules within its local GM, without passing through
any intermediate modules. The thicker arrows represent remote interaction between peer modules.

Four distinct forms of interaction styles involving protocol modules have been identified, as listed
below. The first three are shown in Figure 3.

1. Local inter-module interactions between modules internal to the same GM.

2. Remote inter-module interactions between peer modules in distinct GMs.

3. Interactions between the server and local protocol modules.

4. Interactions between an external entity and a protocol module.

The last interaction style allows a protocol module to notify or to be notified by an external entity.
In the following, each of these interaction styles are discussed individually. Although commonplace,
server-to-server interactions are not considered here.

Local Inter-module Interactions As mentioned above, the GM is composed of a collection of
protocol modules, each of which may provide a service to other modules in the same GM. In addition,
a protocol module may also listen to events from other modules. Figure 4 illustrates a generic view of
the internal inter-module interaction interfaces, through which local protocol modules communicate. In
the figure, the service interface implemented by module A is used by modules B and C within the same
GM to invoke commands offered through the service interface (e.g. to join() a group). Module A also
implements a set of listener interfaces through which it can be notified of events generated by modules
D and E (e.g. a viewChange() event.)

A module must implement at least one service interface, but may also implement more than one
service (not shown in Figure 4). Implementing multiple service interfaces is useful when a module



intercept and substitute the services of another module, e.g. the StateMergeModule in Figure 2. For
most other circumstances a module should implement only a single service interface to encourage reuse.

The service interface typically contains one

Module B Module C

Module A

Module D Module E

Service Interface

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command k
Event j of listener 
interface n

en , je1, ie1,1

c1 ck

ck
en , j

Figure 4. A generic view of the interfaces used for
local inter-module interactions.

or more commands (c1, . . . , ck), that can be
invoked by the server or other modules. The
service interface may also be empty in that
it does not provide any commands (methods).
Such empty interfaces are often called marker
interfaces, and serves to identify the module
internally in the GM. The dashed box around
the StateMergeService interface in Figure 2 is
one example of an empty marker interface.

A module may have one or more associated
listener interfaces through which module gener-
ated events can be passed to its listeners (other
modules or the server). Figure 2 illustrates the use of multiple listener interfaces; the StateMergeModule
generates events through both StateMergeListener and MembershipListener, since the StateMergeMod-
ule substitutes the MembershipModule. Usually however, a module generate events through a single
listener interface (see Figure 4). A module without any associated listener interfaces is useful only when
the module provides services commands. A module may receive events (e1,1, . . . , e1,i) generated by other
modules by implementing one or more listener interfaces.

The service and listener interfaces are defined in terms of Java interfaces (ensuring type safety), and
arrows in Figure 4 represents Java methods (commands/events).

Remote Inter-module Interactions Modules within one GM may interact with its remote peer
modules in other GMs belonging to the same group. Two approaches can be used by module developers
to support interaction between peer modules:

• Message multicasting (using the MulticastModule)

• Internal group method invocations (using the InternalGMIModule).
The advantage of the former approach is primarily efficiency, since it adds no overhead to the messages
being sent by the module, except for a small header used to route multicast messages to the appropriate
peer modules. The drawback with message multicasting is that module complexity increases, since the
developer must implement marshalling and unmarshalling routines for the different message types to be
exchanged between peer modules.

Contrarily, the InternalGMIModule takes care of marshalling and unmarshalling, reducing the module
complexity to pure algorithmic considerations. The InternalGMIModule do however impose an
additional overhead compared to that of message multicasting. The overhead is mostly due to the use
of dynamically generated proxies [1, Ch.16]. Albeit not confirmed through measurements, the expected
overhead imposed by the proxy mechanism is small compared to the communication latencies between
the peer modules. Details of the workings of the InternalGMIModule as a means for communication
between peer modules is given in [8].



Server to Module Interactions The server implementation may interact with the local modules.
Figure 5 shows a generic view of the server-to-module interactions. A server replica may choose to
listen to an arbitrary set of events generated by its associated protocol modules. To accomplish this, the
server must implement the listener interfaces associated with the modules whose events are of interest.
The server may also choose to not implement any listener interfaces if it does not need to process events
generated by modules. In a similar manner, the server may invoke any one of the commands provided
through the service interfaces of the protocol modules associated with the server.

As Figure 5 demonstrates, various combinations of using services and listening to events are possible.
The server may both listen to events of a module, and invoke its service commands (middle module), or
it may just listen to its events (left module), or just invoke its service commands (right module).

Group
Manager

Server

Module A Module B
Service Interface 1

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command l of service interface m
Event j of listener interface n

en , je1, ie1,1

c1,1 c1,k

cm ,l
en , j

Module C
Service Interface m

cm ,1 cm ,l

getService()

Figure 5. A generic view of the server-to-module interaction interfaces.

Establishing the connections between the server and its associated set of protocol modules is done
through the GroupManager object. The GroupManager object wraps the protocol modules and acts as an
interface between the modules and the server. Initially, when the server requests group communication
support it will invoke the getGroupManager() factory method, passing its own reference (this). Given
the server reference, the GM establishes upcall connections between the server and the modules whose
listener interfaces are implemented by the server. On the other hand, establishing connections between
the server and the service interfaces of modules are done on-demand by the server implementation
itself. This is accomplished using the GroupManager.getService() method shown in Figure 5. Given a
reference to the service interface of a module, the server can easily invoke its commands.

External Entity to Module Interactions Protocol modules may also interact directly with (possibly
replicated) external entities. For instance, a protocol module could invoke methods on an external entity
or vice versa. This interaction style is useful for a number of purposes, such as event logging, event
notifications or triggering some action, e.g. recovery [8] or upgrade [13].

External entities and modules can interact in both directions, as shown in Figure 6. External Entity 1
invokes Module X to perform some operation implemented by the module, whereas External Entity 2
allows a module to invoke methods on it to perform some operation. Interaction with external entities
relies on the dependable registry for looking up the reference of the external entity (or the module)
with which to communicate. Prior to such lookups, the receiving end must bind() its reference in the
dependable registry. The two interactions shown in Figure 6 are both based on EGMI, and hence the
receiving end must include the ExternalGMIModule in its set of protocol modules.



Group ManagerGroup Manager

Module X1 Module X2

Server 2

E
G

M
I I

nt
er

fa
ce

Server 1

Module Y1 Module Y2

LeaderLeader

External
Entity 1

External
Entity 2

E
G

M
I Interface

Dependable
Registry

lookup()

bind()lookup()

bind()
Legend:Legend:

External entity interaction
Registry interactions

Figure 6. External entity to module interactions.

6 The Dynamic Construction of Protocol Modules

The group manager encapsulates the set of protocol modules associated with an application. Protocol
modules are configured using an application-specific replication policy [8]. The policy supports
specifying the set of protocol modules to be constructed, as well as supplying configuration parameters
to the modules, e.g. timeout values and the redundancy level to maintain.

Protocol modules are constructed dynamically at runtime based on the replication policy of the
application requesting a protocol composition. This is essentially all a server developer needs to know
about the construction of protocol modules. However, a module developer needs to have more intimate
knowledge of the architecture which simplifies the following tasks:

• Automatic construction of protocol modules.

• Establishing links between dependent modules.

• Establishing links between the server and its dependent modules.

• Reconfiguration of links for module substitution.
The dynamic construction facility requires that module developers adhere to these rules:

1. The module must contain a single constructor, whose signature contains the set of services
required by the module.

2. The module must implement the Link interface.

3. The module may implement the Bootstrap interface.

4. The module may implement listener interfaces of other modules.

5. The module may declare that it substitutes the services/listeners provided by another module.

Figure 7 illustrates the rules in terms of interfaces. Solid boxes indicate required interfaces, while dashed
boxes denote optional interfaces which may be implemented by a module depending on its requirements.



G
roup M

anager

Server

ZModule

Link BootstrapConstructor
(XService, YService)

@Substitutes(YService, YListener)
XListener YListener

XModule YModule

YService

XService YService

LegendLegend Mandatory

Optional

YListener

ZService

new ZModule(xs, ys)

Module Factory

complete(object)addListener(object)

getGroupManager(server)getService(ZService)

Module repository

Delay

Figure 7. The module factory and interfaces used for module construction.

Module Instantiation As shown in Figure 7, ZModule requires two other services, XService and
YService, which are implemented by XModule and YModule, respectively. These two modules must
have been constructed prior to ZModule, and are thus passed to the ZModule constructor. The module
factory uses reflection [1, Ch.16] to examine the constructor signature of the ZModule to determine
its required module dependencies, and queries the module repository to obtain the required module
instances. If a required module instance is not found, it will be created on-demand and stored in the
repository. Note that cyclic module dependencies are not possible with this approach, i.e. if ZModule
depends on XModule and vice versa, they cannot be constructed using the scheme above. However,
dependency cycles are still possible through minor supplements to the mutually dependent modules.

Construction order may sometimes be important for correct functioning of a protocol stack.
Construction follows the bottom-up order specified in the replication policy [8]. Referring to Figure 2,
this means that the DispatcherModule is constructed first, followed by the MembershipModule and so
on. Note that the DispatcherModule does not depend on other modules, but is instead responsible for
establishing a connection with the daemon.

Link Configuration Once all the protocol modules associated with an application have been
instantiated, links between the modules are established by the module factory through the mandatory
Link interface. The addListener() method shown in Figure 7 serves two primary purposes:

• To establish upcall links with other modules and the server; links are only established with modules
(or the server) implementing the listener interface associated with the module.

• To perform bootstrap operations that cannot be performed during module construction.



In Figure 7 the object passed to the addListener() method may be either the server object or a module.
Note that the server object is always passed to the addListener() method, independent of it implementing
the listener interface associated with the module. Thus the module can exploit the server reference type
as a means to obtain necessary configuration data from the replication policy, e.g. timeout values, to
configure/bootstrap the module. If the server object does not implement the listener interface of the
module, it cannot receive any events from the module. Furthermore, the addListener() method may be
invoked several times for distinct modules, allowing multiple modules to receive the same set of events.
The order in which addListener() is invoked follows the construction order defined above, with the server
object passed in last.

Bootstrapping Some modules may need to perform supplementary bootstrap operations after all the
links have been established. The final task performed by the module factory is to find modules that
implement the optional Bootstrap interface, and invoke its complete() method to perform the final
bootstrap operations. For instance, the server could configure its replication policy to automatically
join() its group during the bootstrap phase, simplifying the server implementation even further. Joining
the group requires that all the links have been set up between all the protocol modules, and hence it
cannot be bootstrapped through the Link interface. Given this bootstrap mechanism, some modules may
replace its service interface with an empty marker interface, and instead bootstrap automatically.

Event Interception As advocated initially in this paper, some modules need to intercept commands/
events originated in other modules. Such interception may be necessary for a number of reasons, e.g.
if delivery of events must be delayed until after the intercepting module has completed its tasks. For
example, a total ordering module needs to delay the delivery of messages pending agreement among
group members on the sequence in which to deliver messages.

Modules that wish to intercept the commands/events of another module must declare that it substitutes
the other module. The @Substitute declaration uses annotations [1, Ch.15] to indicate which service and
listener interfaces to substitute. As shown in Figure 7, the ZModule substitutes both interfaces associated
with the YModule. The module factory will analyze the substitute declarations and reconfigure the links
accordingly, hiding the presence of the YModule from other modules and the server.

Implementing a module which substitutes another can be accomplished by inheriting from the
substituted module, or by wrapping it. Note that it is essential that substituting modules be ordered
appropriately in the replication policy so as to ensure correct interception.

7 Conclusions and Future Work

In this paper, the design and implementation of a protocol composition framework for Jgroup/ARM has
been presented. The main feature is the direct communication between protocol modules, saving costly
processing in intermediate modules. It also supports dynamic construction of protocol compositions
based on a simple configuration file. A future project aims to provide support for runtime adaption
and to redesign the system into a generic protocol composition framework that can be used by other
middleware platforms as well, and not restricted to group communication toolkits. Another future project
involves evaluating and comparing the cost of vertically stacked protocols using Appia [10], Cactus [6]
and JavaGroups [3] vs. Jgroup/ARM protocol compositions.



References

[1] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-Wesley, 4th edition,
2005.

[2] Ö. Babaoğlu, R. Davoli, and A. Montresor. Group Communication in Partitionable Systems: Specification
and Algorithms. IEEE Trans. Software Eng., 27(4):308–336, Apr. 2001.

[3] B. Ban. JavaGroups – Group Communication Patterns in Java. Technical report, Dept. of Computer Science,
Cornell University, July 1998.

[4] M. Fowler. Inversion of Control Containers and the Dependency Injection pattern, Jan. 2004. Available
from: http://www.martinfowler.com/articles/injection.html.

[5] M. Hayden. The Ensemble System. PhD thesis, Dept. of Computer Science, Cornell University, Jan. 1998.

[6] M. A. Hiltunen and R. D. Schlichting. The Cactus Approach to Building Configurable Middleware Services.
In Proc. Workshop on Dep. Sys. Middleware and Group Comm., Nuremberg, Germany, Oct. 2000.

[7] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architecture for implementing network protocols.
IEEE Trans. Software Eng., 17(1):64–76, Jan. 1991.

[8] H. Meling. Adaptive Middleware Support and Autonomous Fault Treatment: Architectural Design,
Prototyping and Experimental Evaluation. PhD thesis, Norwegian University of Science and Technology,
Department of Telematics, May 2006.

[9] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia vs. Cactus: Comparing Protocol Composition
Frameworks. In Proc. 22nd Symp. on Reliable Distributed Systems, Florence, Italy, Oct. 2003.

[10] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multiple coordinated
channels. In Proc. 21st Int. Conf. on Distributed Computing Systems, Phoenix, Arizona, Apr. 2001.

[11] A. Montresor. System Support for Programming Object-Oriented Dependable Applications in Partitionable
Systems. PhD thesis, Dept. of Computer Science, University of Bologna, Feb. 2000.

[12] O. Rütti, P. T. Wojciechowski, and A. Schiper. Service Interface: A New Abstraction for Implementing and
Composing Protocols. In Proc. 21st Annual ACM Symp. on Applied Computing, Dijon, France, Apr. 2006.

[13] M. Solarski and H. Meling. Towards Upgrading Actively Replicated Servers on-the-fly. In Proc. Workshop
on Dependable On-line Upgrading of Distributed Systems in conjunction with COMPSAC 2002, Oxford,
England, Aug. 2002.

[14] P. Urbán, X. Défago, and A. Schiper. Neko: A single environment to simulate and prototype distributed
algorithms. Journal of Information Science and Engineering, 18(6):981–997, November 2002.

[15] R. van Renesse. Masking the Overhead of Layering. In Proc. 1996 ACM SIGCOMM Conference, Stanford
University, Aug. 1996.

[16] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A Flexible Group Communication System.
Communications of the ACM, 39(4):76–83, Apr. 1996.


	1 Introduction
	2 Introduction to Protocol Architectures
	3 The Jgroup/ARM Middleware
	4 Protocol Modules
	5 Module Interactions
	6 The Dynamic Construction of Protocol Modules
	7 Conclusions and Future Work

