
Anthill: A Framework for the Development of Agent-Based Peer-to-Peer Systems

Özalp Babaŏglu ∗ Hein Meling‡ Alberto Montresor∗

Abstract

Recent peer-to-peer (P2P) systems are characterized by
decentralized control, large scale and extreme dynamism
of their operating environment. As such, they can be seen
as instances ofcomplex adaptive systems (CAS)typically
found in biological and social sciences. In this paper we
describe Anthill, a framework to support thedesign, im-
plementationandevaluationof P2P applications based on
ideas such as multi-agent and evolutionary programming
borrowed from CAS. An Anthill system consists of a dy-
namic network of peer nodes; societies of adaptive agents
travel through this network, interacting with nodes and co-
operating with other agents in order to solve complex prob-
lems. Anthill can be used to construct different classes of
P2P services that exhibit resilience, adaptation and self-
organization properties. We also describe preliminary ex-
periences with Anthill in implementing a file sharing appli-
cation.

1 Introduction

Informally, peer-to-peer(P2P) systems are distributed
systems based on the concept of resource sharing by direct
exchange betweenpeernodes (i.e., nodes having the same
role and responsibility). Exchanged resources include con-
tent, as in popular P2P file sharing applications [16, 8, 10],
and storage capacity or CPU cycles, as in computational and
storage grid systems [1, 15, 9].

Distributed computing was intended to be synonymous
with P2P computing long before the term was invented,
but this initial desire was subverted by the advent of client-
server computing popularized by the World Wide Web. The
modern use of the term P2P and distributed computing as
intended by its pioneers, however, differ in several impor-
tant aspects. First, P2P applications reach out to harness the
outer edges of the Internet and consequently involve scales

∗Department of Computer Science, University of Bologna,
Mura Anteo Zamboni 7, 40127 Bologna (Italy), Email:
{babaoglu,montresor}@CS.UniBO.IT

‡Department of Telematics, Norwegian University of Science and
Technology, O.S. Bragstadsplass 2A, N-7491 Trondheim (Norway),
Email: meling@item.ntnu.no

that were previously unimaginable. Second, P2P by defini-
tion, excludes any form of centralized structure, requiring
control to be completely decentralized. Finally, and most
importantly, the environments in which P2P applications
are deployed exhibit extreme dynamism in structure, con-
tent and load. The topology of the system typically changes
rapidly due to nodes voluntarily coming and going or due
to involuntary events such as crashes and partitions. The
load in the system may also shift rapidly from one region to
another, for example, as certain files become “hot” in a file
sharing system; or the computing needs of a node suddenly
increase in a grid computing system.

Traditional techniques for building distributed applica-
tions are not satisfactory for dealing with the scale and dy-
namism that characterize modern P2P systems. For exam-
ple, certain file-sharing applications [8] rely on flooding-
style communication, severely limiting their scalability.
Other systems require manual intervention for their config-
uration or tuning as their environment changes. We argue
that satisfying the needs of P2P application development re-
quires a paradigm shift that includes adaptation, resilience
and self-organization as primary concerns.

In this paper, we suggest thatcomplex adaptive systems
(CAS) commonly used to explain the behavior of certain
biological and social systems can be the basis of a program-
ming paradigm for P2P applications. In the CAS frame-
work, a system consists of a large number of relatively sim-
ple autonomous computing units, oragents. CAS typically
exhibit what is calledemergent behavior: the behavior of
the agents, taken individually, may be easily understood,
while the behavior of the system as a whole defies sim-
ple explanation. In other words, the interactions among
agents, in spite of their simplicity, can give rise to richer
and more complex patterns than those generated by single
agents viewed in isolation.

From a P2P perspective, CAS offer several attractive
properties, including total lack of centralized control. Fur-
thermore, the emergent behavior of CAS is highly adaptive
to changing environmental conditions or unforeseen scenar-
ios, is resilient to deviant behavior (failures) and is self-
organizing towards desirable global configurations.

In order to pursue these ideas, we are developingAnthill,
a novel framework for P2P application development, based

on ideas such as multi-agent systems (MAS) and evolu-
tionary programming borrowed from CAS [17, 12]. The
goals of Anthill are to provide an environment that simpli-
fies the design and deployment of P2P systems based on
these paradigms, and to provide a “testbed” for studying
and experimenting with CAS-based P2P systems in order to
understand their properties and evaluate their performance.

Anthill uses terminology derived from the ant colony
metaphor. An Anthill distributed system is composed of
a network of interconnectednests. Each nest is a peer entity
sharing its computational and storage resources. Nests han-
dle requests originated by local users, by generating one or
moreants– autonomous agents that travel across the nest
network trying to satisfy the request. Ants can observe their
environment and perform simple local computations lead-
ing to actions based on these observations. The actions of
an ant may modify the environment, as well as the ant’s
location within the environment. In Anthill, emergent be-
havior manifests itself asswarm intelligencewhereby the
collection of simple ants of limited individual capabilities
achieves “intelligent” collective behavior [3].

The Anthill API supports P2P application development
and deployment through the provision of a set of services
offered by nests, such as storage management, communi-
cation and topology management, and ant scheduling. De-
velopers can build P2P applications simply by defining the
structure of the P2P system and designing appropriate ant
algorithms using the Anthill API for solving the application
problem. The services provided by Anthill free the devel-
oper from considering low-level details such as communi-
cation, security and scheduling strategies.

Anthill includes a simulation environment to aid devel-
opers analyze and evaluate the behavior of P2P systems
prior to deployment. Simulation parameters, such as the
structure of the network, the ant algorithms to be deployed,
characteristics of the workload presented to the system, are
all defined using XML files, providing a flexible configu-
ration mechanism. Unlike other toolkits for MAS simula-
tion [11, 6], Anthill uses a single ant implementation in both
the simulation and the runtime environments, thus avoiding
the cost of re-implementing ant algorithms before deploy-
ing them. This important feature has been obtained through
careful design of the Anthill API and by providing distinct
implementations for simulation and deployment.

In addition to the adaptation properties derived from its
multi-agent structure, Anthill pushes the analogy with nat-
ural systems even further by “evolving” ant algorithms to
better adapt to certain tasks. This is accomplished through
evolutionary computing techniques such as genetic algo-
rithms [12] within the simulation environment. The set of
parameters that define the behavior of an ant algorithm are
considered its “genetic code” and the system automatically
evolves ant populations so that successive generations im-

prove upon an appropriate fitness measure.
In order to test our ideas regarding P2P as CAS, we have

used Anthill to build a simple file sharing application called
Gnutant. There is no doubt that building on top of Anthill
has simplified the implementation. But more importantly,
the resulting system indeed exhibits adaptiveness with re-
spect to a variety of conditions and continues to improve its
performance as time goes on, despite starting from a state
of total ignorance. Gnutant itself is of interest as it com-
bines the best characteristics of the two popular file sharing
systems, Gnutella and Freenet [8, 10].

2 The Anthill Model
In this section, a description of the Anthill model is pro-

vided. The basic elements composing the model are de-
fined, while the details of the prototype implementations of
the model are postponed to Section 3.

An Anthill system is composed of a self-organizing over-
lay network of interconnectednests, as illustrated in Fig-
ure 1. Each nest is a middleware layer capable of perform-
ing computations and hosting resources. Any machine con-
nected to the Internet and running Anthill can act as a nest.
The network is characterized by the absence of any fixed
structure, as nests come and go and discover each other on
top of a communication substrate.

Each nest interacts with local instances of one or more
applicationsand provides them with a set ofservices. Ap-
plications provide the interface between the user and the
P2P network, while services have a distributed nature and
are based on the collaboration among nests. An example
application may be a file-sharing application, while a ser-
vice could be a distributed indexing service used by the file-
sharing application to locate files.

An applications performsrequestsand listens forreplies
through its local nest. Requests and replies constitute the
interface between applications and services. For example,
in a scientific document-sharing network, a request would
be a query for a particular set of keywords, and the reply
would contain a set of URLs to documents containing those
keywords.

When a nest receives a request from the local applica-
tion, an appropriate service for handling the request is se-
lected from the set of available services. Services are imple-
mented byants, autonomous agents capable to travel across
the nest network. In response to a request, one or more ants
are generated and assigned to a particular task. While ex-
ploring the network, ants interact with the nests that they
visit in order to accomplish their goal.

Anthill does not specify which services a nest should
provide, nor impose any particular format on requests and
replies. The provision of services and the interpretation of
requests are delegated to ants. The set of available services
is dynamic, as new services may be installed by the user.

Resource
Storage

Resource
Storage

Resource
Storage

Resource
Storage

Resource
Storage

Resource
Storage

N4

N1

N3

N5

N2

N6

Figure 1. Overview of a nest network.

2.1 The Nest

Figure 2 illustrates the architecture of a nest that is com-
posed of three logical modules: ant scheduler, communica-
tion layer and resource managers. Theant schedulermod-
ule multiplexes the nest computation resource among visit-
ing ants. It is also responsible for enforcing nest security
by providing a “sandbox” for ants in order to limit the re-
sources available to ants and prohibit ants from performing
potentially dangerous actions (e.g., local file access).

Thecommunication layeris responsible for discovery of
new nests, for network topology management and for ant
movement between nests. In the network, each node has
a unique identifier. In order to communicate with a re-
mote node, its identifier must be known. The set of nests
known to a node are calledneighborsof that node. Note
that the concept of neighborhood does not involve any dis-
tance metrics, since such metrics are application dependent
and can more appropriately selected by developers. The
collection of neighbor sets defines the nest network that
might be highly dynamic. For example, the communica-
tion layer may discover a new neighbor, or it may forget
about a known nest if it is considered unreachable. Both
the discovery and the removal processes may be either me-
diated by ants, or performed directly by the communication
layer. In the former case, ants may report about new remote
nodes they visited, or may fail to move to a neighbor be-
cause of a communication problem. In the latter case, the
exact implementation of discovery and removal depends on
the underlying communication substrate, and is discussed
in the next section.

Nests offer their resources to visiting ants through one
or moreresource managers. Example resources could be
files in a file-sharing system or CPU cycles in a computa-
tional GRID, while the respective resource managers could
be a disk-based storage manager and a task scheduler. Each
resource manager is associated with a set of policies for
managing the (inherently limited) resource. For example,
a least-recently-used(LRU) policy may be used to discard

Routing Storage File
Sharing
Service

Scheduler

Ant

Layer

Communication

Network

Nest
URL Manager

File Manager

Task Manager

Grid
Service

Figure 2. The architecture of a nest.

items managed by a file manager when space is needed for
new files. Each service installed by a nest is associated with
a set of resource manager modules. For example, the nest
in Figure 2 provides two distinct services: a file-sharing ser-
vice based on a distributed index for file retrieval, in which a
routing storage is used by ants in making routing decisions,
a file manager is used for maintaining shared files and a
URL manager is used to maintain the distributed index; and
a computational grid application, in which a task manager
executes tasks assigned to it.

2.2 Ants

Ants are generated by nests in response to user requests;
each ant tries to satisfy the request for which it has been
generated. An ant will move from nest to nest until it fulfills
its task, after which (if the task requires this) it may return
back to the originating nest. Ants that cannot satisfy their
task within atime-to-live(TTL) parameter are terminated.
When moving, the ant carries its state, that may contain the
request, results or other ant specific data. The ant algorithm
may be transmitted together with the ant state, if the destina-
tion nest does not know it; appropriate code transfer mech-
anisms are used to avoid to download the same algorithm
more than once, and to update it when a new version of the
same algorithm is available.

Ants do not communicate directly with each other; in-
stead, they communicate indirectly by leaving information
related to the service they are implementing in the appro-
priate resource manager found in the visited nests. For ex-
ample, an ant implementing a distributed lookup service
may leave routing information that helps subsequent ants
to direct themselves toward the region of the network that
more likely contains the searched key. This form of indirect
communication, used also by real ants, is known asstig-
mergy[5].

The behavior of an ant is determined by its current state,
its interaction with resource managers and its algorithm,
that may be non-deterministic. For example, an ant may

ReplyListener

AntView

Ant

Nest

addServicerequest addNeighbor getNeighbors removeNeighbor

reply

run

reply move getTTL getNestId getManager addNeighbor getNeighbors

P2P Application

Nest Implementation

Ant Implementation

Scheduler
Ant

N
et

w
or

k

Layer
Communication

Storage
Resource

Figure 3. The Anthill interaction model.

probabilistically decide not to follow what is believed to be
the best route for accomplishing a task, and choose to ex-
plore alternative regions of the network. Ants must imple-
ment theAnt interface shown in Figure 3. Therun() method
contains the ant algorithm and is executed at each nest vis-
ited during the ant’s trip.

The set of actions available to ants are limited to those in-
cluded in theAntView interface, shown in Figure 3. Among
these actions, ants are allowed to move to other nests, ac-
cess local resource managers, obtain identifiers for the local
nest and its neighbors, augment the list of neighbor nests,
and finally notify the nest of a reply for a request originated
in this nest.

3 The Anthill Framework

In this section, we discuss the characteristics of therun-
time and thesimulationenvironments. These two distinct
implementations of the Anthill model are used for real net-
work deployment and for evaluation purposes, respectively.

3.1 The Runtime Environment

A prototype of the runtime environment, which is the
distributed implementation of the Anthill model, is cur-
rently under development. The prototype is written in Java
and is based on JXTA [7], which is an open-source P2P
project promoted by Sun Microsystems. JXTA aims at es-
tablishing a network programming platform for P2P sys-
tems by identifying a small set of basic facilities necessary
to support P2P applications and providing them as building
blocks for higher-level functions. The benefits of basing our
implementation on JXTA are several. For example, JXTA
provides the possibility of using different transport layers
for communication, including TCP/IP and HTTP, and is ca-
pable of handling firewall and NAT related problems. This
spare our implementation from these low-level details. Fur-
thermore, we may exploit the complex security architecture
that is being developed for JXTA.

The JXTA middleware is composed of three layers. At
the bottom is theJXTA core, that deals with low-level func-
tions such as peer establishment, peer discovery, commu-
nication management and routing. TheJXTA servicesare
built on top of the core and deal with higher-level concepts,
such as indexing, searching, and file sharing. These ser-
vices, although useful by themselves, are used byJXTA ap-
plicationsto build high-level applications like chat, auction
and persistent storage.

The runtime environment of Anthill is designed as a
JXTA service and exploits the facilities offered by the JXTA
core to provide an infrastructure for the construction of
ant-based P2P distributed applications. It implements the
Nest interface, providing methods for performing generic
requests to Anthill applications. This nest implementation
includes an ant scheduler capable of multiplexing the Java
virtual machine among multiple visiting ants. Using the se-
curity model of Java, the execution of ants is confined to a
controlled environment (“sandbox”) by limiting their inter-
actions with the local nest to those included in theAntView
interface. A number of disk- and memory-based resource
managers are provided, enabling the ant algorithms to make
use of pre-installed classes in the visited nests. Neverthe-
less, it is also possible for ants to use their own specialized
resource storages.

The communication layer is based on some of the funda-
mental primitives offered by the JXTA core, namely pipes,
peer groups and advertisements.Pipesare communication
channels for sending and receiving messages, and are used
in the communication layer to move ants between nests. A
peer groupis a collection of cooperating peers providing a
common set of services and speaking the same set of pro-
tocols. Peers may participate in several groups at the same
time, thus offering several services. In Anthill, there is a
general peer group constituted by all peers that are execut-
ing the nest service, and several peer groups constituted by
the set of nests that accept to execute a particular ant algo-
rithm. Owners of peer nodes are able to decide which kind
of services their machines are going to offer, by accepting
or rejecting the installation of new ant algorithms. Using
features of the Java virtual machine, we are implementing
a simple class loader capable of downloading the code of
unknown ants from remote sites and cache it on local disks
so as to avoid repeated downloads. Finally,advertisements
are XML structured documents that describe and publish
the existence of a resource, such as a peer, a peer group,
or a service. Advertisements are used by the JXTA discov-
ery protocol to locate services. In Anthill, they are used to
advertise peer groups of nests offering a particular service.

3.2 The Simulation Environment

To evaluate ant algorithms, Anthill includes a simulation
environment through which the behavior of a particular ant

implementation may be simulated and assessed. Simulat-
ing different P2P applications require developing appropri-
ate ant algorithms and a corresponding request generator
characterizing user interactions with the application. Each
simulation study, called anexperiment, is specified using
XML by defining a collection of component classes and a
set of parameters for component initialization. For example,
component classes to be specified include the simulated nest
network, the request generator to be used, and the ant algo-
rithm to be simulated. Initialization parameters include the
duration of the simulation, the network size, failure proba-
bility, the number of requests to be generated, and the type
and capacity of the resource managers to be used by ants.
This flexible configuration mechanism enable developers to
build experiments at run-time by assembling a collection of
pre-defined and customized component classes, thus sim-
plifying the process of evaluating ant algorithms.

In the current implementation, a P2P network is simu-
lated inside a single Java virtual machine. The network is
specified through the total number of nests and the num-
ber of neighbors associated with each nest. Initially, the re-
quired number of nests are generated, and the set of neigh-
bors for each nest are selected randomly over the set of all
nests. The network is dynamic, as new nests may join the
network at runtime and existing nests may crash or vol-
untarily leave the network, based on pre-defined join and
leave probabilities. Furthermore, the topology of the net-
work may evolve during simulation, due to ants exploring
the network and leaving information about remote nests.

Simulated nests are clearly distinct and simpler than the
ones used in the runtime environment. Nevertheless, it is
important to note that ant algorithms are totally independent
of the nest implementation and continue to work in both en-
vironments without any changes. The communication layer
is based on local interactions rather than remote commu-
nication; ants moving from one nest to another are simply
transferred to the scheduling queue of the destination nest.
Ant schedulers of simulated nests are controlled by a cen-
tralized scheduler, that uses the provided request generator
to create requests and in a round-robin fashion invokes the
antsrun() method. Finally, resource managers are imple-
mented as simple data structures with a maximum capacity
and associated replacement policies.

The simulation proceeds by executing the sequence of
generated requests on the nest network and by monitoring
performance parameters such as the number of request ini-
tiated, satisfied, ant moves performed, network generated
traffic, etc. The simulation environment enables program-
mers to evaluate several different experiments and obtain
average figures for the collected statistics. Monitoring net-
work traffic is not performed at the packet level, but rather
at the ant level, measuring the number of ants sent between
various nests in the system.

4 The Evolutionary Framework

In Anthill, we further exploit the “nature” metaphor by
using evolutionary techniques for improving various char-
acteristics of a P2P system. In particular, we make use of
genetic algorithms [12] in tuning the ant algorithms used
by the P2P system. An Anthill system is the composition
of the operating environment and the collective behavior
of ants, whose algorithms can be parameterized in various
ways. The operating environment describes limiting factors
such as disk capacities, connectivity degree, join and leave
frequency of nodes, etc. A typical parameter for an ant al-
gorithm is exploration probability, that will allow an ant to
either deterministically follow what is reputed to be the best
path towards a resource, or non-deterministically select one
of the neighbors of the current nest, thus adding some de-
gree of randomness to the exploration.

Using genetic algorithms, we can specify optimization
criteria and constraints for the parameters of the operating
environment and ant algorithms. A typical optimization cri-
terion could be the minimization of the total path length tra-
versed by ants (thus reducing the imposed network load),
constrained by the connectivity degree, leave frequency and
some threshold on the percentage of ants that succeed. Such
optimization problems involve too many parameters and
constraints to be solvable with traditional techniques, thus
the need for genetic algorithms. We are currently extend-
ing the Anthill simulation environment to include optimiza-
tion criteria definitions so as to allow automatic selection
of parameters based on a fitness function (specific for each
application).

In addition to the off-line use of genetic techniques, we
are investigating whether genetic techniques can also be ap-
plied at run-time. For example, in order to satisfy a request,
a nest could launch several ants, each characterized by a
different set of parameters, and then rate them using a local
fitness criterion. Subsequent requests could be delegated to
ants derived genetically from those that were deemed fittest
in previous requests. Nests could also “steal” the algorithms
and parameters of visiting ants and use them in crossover
and mutation techniques for generating new ants. It is inter-
esting to note that the on-line evolutionary selection mech-
anism itself can be viewed as a P2P system whose task is to
tune the ants of the original P2P application.

5 File Sharing in Gnutant

In this section, we present our preliminary experience in
using Anthill to build a file-sharing application calledGnu-
tant. In order to facilitate file searches, Gnutant builds a dis-
tributed file index scattered across the nest network, whose
task is to store URLs for shared files, together with rout-
ing information needed to navigate through the index. The
index is constructed at runtime by Gnutant ants, that travel

Start Download Reply

User

Network

Application Logic Layer

Network Layer

Insert Search

Nest

Search request ReplyInsert request
Shared
Folder

Figure 4. Gnutant Application Overview.

through the network collecting information about new and
existing files and insert this information in the index.

In Gnutant, each file is associated with somemeta-data
comprising a set of textualkeywordsand a uniquefile iden-
tifier. The keywords are used by Gnutant to organize the
distributed index for routing, and may be provided by the
user who inserted the file, or obtained automatically from
the filename. The file identifier is composed of the file size
and a cryptographic digest computed over the file content,
and enables comparison of files for equality. Thus, different
URLs for replicas of the same file will have the same file
identifier. We exploit this property in order to provide faster
file downloads, by requesting disjoint fragments of the file
from multiple locations.

Figure 4 gives an overview of the Gnutant application.
Users interact with Gnutant by copying files for sharing
into a local folder, by issuing search queries and listening
for replies, and by selecting files for download from remote
sites. When theapplication logic layerdetects a new file in
the shared folder, aninsert requestis issued to the local nest
in order to advertise the presence of the file to other nests
in the network. Search queries presented by users are is-
sued assearch requests. Upon receiving a request, the nest
will generate the appropriate ants to handle it. An insertion
request for a file contains the file identifier, a URL and the
collection of keywords, while a search request simply spec-
ifies a collection of keywords. We say that a file “satisfies
a search request” if its set of associated keywords contains
all keywords included in the search request.

As shown in Figure 2, each nest includes three resource
managers: afile storagefor managing files in the shared
folder; aURL storagecontaining URLs to files; and arout-
ing storagethat ants may access or modify in order to make
routing decisions or improve the routing of future ants, re-
spectively. The URL and routing storages in the network
constitute the distributed file index.

5.1 The Gnutant Ant Algorithms

In this section, we briefly present the ant algorithms used
to implement Gnutant. Additional details can be found in
a companion paper [2]. Gnutant ants are generated in re-
sponse to user requests, and travel across the network try-
ing to satisfy them. Three distinct types of ant algorithms
are used, each of them specialized in a different task. The
InsertAnttype is specialized in advertising the existence of
files by insertion of URLs into the distributed index, and is
used when there is a new file available in the shared folder,
either because the user placed it there or after a download.
The SearchAnttype is specialized in file searches, and is
generated in response to user queries. It exploits the in-
formation left in routing storages by other ants, trying to
determine the shortest path to files matching the user query.
Upon reaching its TTL, the ant will return to the origina-
tor nest backtracking its path. During the return trip, the
ant will update both the distributed index and the routing
storages to reflect its findings. Finally, theReplyAnttype is
used to reduce the response times of searches. A ReplyAnt
is generated at each nest where a SearchAnt locates a file.
The ReplyAnt returns immediately to the originator nest,
while the SearchAnt may continue its exploration to find
other files satisfying the query.

To advertise a file, an InsertAnt is generated for each
keyword associated with the inserted file. Similarly, a
SearchAnt is generated for each of the keywords contained
in a search request. Each of these ants carries also the en-
tire query string. Together, the ants try to satisfy the given
request concurrently, exploring different regions of the nest
network, since each of them will be routed independently
based on its associated keyword.

InsertAnt and GnutantAnt make routing decisions using
the specialized routing storage provided with Gnutant, by
selecting the next nest to visit in their network exploration.
The routing storage is based on the concept ofhashed key-
word routing, that is similar to the routing technique used in
Freenet [10]. Routing storages associate the hash value of a
keyword with a set of nests that are believed to store URLs
for files associated with the corresponding textual keyword.
When visiting a nest, ants inspect the routing storages using
their associated keyword. If an exact match is found, the
ant selects a nest from the set corresponding to the match-
ing hashed keyword; otherwise, a nest associated with the
“closest” hashed keyword is selected. The hash value of
a keyword is computed using the Secure Hash Algorithm
(SHA) to obtain a 160 bit value. This mapping from the tex-
tual string space to the bit string space enables us to com-
pare hashed keywords to determine their closeness. Fur-
thermore, hashing the keywords also helps disperse the load
evenly on the routing storages due to the uniformity prop-
erty of SHA. Basing routing storages on the raw textual
keywords would result in highly unbalanced load since key-

words tend to be highly clustered in textual string space.
The notion of closeness between hashed keywords is

fundamental to Gnutant’s routing scheme. It allows nests
to become biased toward a certain portion of the hashed
keyword space. If a nest is listed in a routing storage un-
der a particular keyword, it will tend to receive more re-
quests for keywords similar to it. Moreover, nests become
specialized in storing URLs of files having similar hashed
keywords, since forwarding a request will result in the nest
itself gaining a URL for the requested file. This clustering
property will improve the search performance over time as
the routing storages evolve their knowledge, enabling ants
to quickly find the relevant region in the nest network.

5.2 Preliminary Simulation Results

In this section we present an evaluation of prelimi-
nary results for the Gnutant application obtained using the
Anthill simulation environment. In order to render our sim-
ulation more realistic, we have collected a set of 10,000
query strings by monitoring the Gnutella network. The ob-
tained query strings were also used as the names for 10,000
files, all of which were inserted into the nest networka pri-
ori to running the simulation. Thus potentially, all of the
queries could have been satisfied. Furthermore, the rout-
ing storages were initialized with randomly generated SHA
keys, causing the ants to move randomly in the beginning.
The simulation was run on a static 2,000-node nest network
with a fan out degree of 6 and 10.

After the insertion phase, 500,000 search requests were
issued and statistics for the behavior of the system was col-
lected. Search requests for the simulation was generated
using a geometric distribution for selecting queries from the
set of 10,000 Gnutella query strings. This distribution en-
able us to bias the search requests towards a certain portion
of the available documents, i.e., the popular search requests
are selected more frequently. The TTL parameter for the
search ants was fixed at 10 hops. The capacity of the rout-
ing, file and URL storages were set to 16, 16, and 64 entries,
respectively. All resource storages use the LRU replace-
ment policy. The number of search hits was sampled every
50th request, and the simulation was repeated ten times in
order to obtain average values.

The simulation results are shown in Figures 5 and 6. Fig-
ure 5 shows the success rate for search requests, when 90%
of the search requests correspond to 10% (upper curves) or
50% (lower curve) of the available documents. The fan out
degree for curvesa andc are 6, while curveb has degree 10.
Figure 6 shows the number of hops necessary for the first re-
ply to a successful search request. As expected, both figures
confirm that the performance of the system improves over
time, as the total number of performed requests increase
and the content of the distributed index evolves. Further-
more, we can see from the figures that the system converges

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

S
uc

ce
ss

fu
l s

ea
rc

h
re

qu
es

ts

Number of search requests

’a-hit’
’b-hit’
’c-hit’

Figure 5. Search success rate.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

N
um

be
r

of
 h

op
s

Number of search requests

’a-hop’
’b-hop’
’c-hop’

Figure 6. Number of hops until first reply.

towards a 55% (33%) success rate for searches and approx-
imately 2.3 (2.8) hops for the average search depth.

6 Related Work
The importance of the P2P distributed computing model

was recently recognized by industry, leading to several stan-
dardization and infrastructure efforts, including JXTA and
the Peer-to-Peer Working Group [13, 7]. Anthill differs
from these industrial initiatives because its main goal is to
support the scientific investigation of the properties of P2P
systems, by providing a simulation testbed for prototyping
and tuning their P2P algorithms. On the other hand, we are
exploiting the rich facilities offered by JXTA [7] as a basis
for the runtime implementation of Anthill.

Anthill’s simulation environment can, to some extent, be
compared with agent simulators such as Swarm [11] and
MASS [6]. Swarm is a general purpose software package
for simulating distributed artificial worlds. It provides a
general architecture for problems that arise in a wide va-
riety of disciplines and is particularly suitable for problems
involving a large number of autonomous entities “living”
in an environment. MASS is an agent simulator developed

with the aim of accurately measuring the influence of differ-
ent multi-agent coordination strategies in an unpredictable
environment. Anthill differs from these systems, as they are
only focused on simulation, and do not support deployment
in a real network environment.

Gnutant can be compared with existing file-sharing sys-
tems. In Gnutella [8], queries are text strings transmit-
ted through broadcasting: each node receiving a query for-
wards it to all its neighbors. Being based on broadcasting,
Gnutella is prone to serious scalability problems, and to
avoid an exponential growth in the number of messages ex-
changed, strict limits are imposed on the TTL of messages
and the number of neighbors known to each node. Unfor-
tunately, these limits restrict the reach of a Gnutella query
and thus the number of matching replies. Gnutant inherits
the free search capability of Gnutella, without relying on
inefficient broadcasting techniques. In Freenet [10], each
file is associated with a key obtained by hashing the file
name. Search requests contain a single key, representing
the desired file. Requests are not broadcast; they are routed
through the network using information gathered by previous
requests. Freenet routing is based on the closeness between
keys: if a node is unable to satisfy a request locally, it is
forwarded to the node that is believed to store files whose
keys are closest to the requested key. The main limitation of
Freenet is that queries are limited to files with well-known
names. Gnutant adopts a routing technique similar to that of
Freenet, but adds the possibility of performing free search
queries by associating files with keywords.

7 Conclusions
The Anthill project is in its early development stages. So

far, we have implemented prototypes of the simulation and
runtime environments, and we have used them to develop
Gnutant, a set of ant algorithms for a file-sharing applica-
tion. The simulation environment, with its flexible configu-
ration mechanism, has been very valuable in supporting the
design of Gnutant. Once tuned, Gnutant has been deployed
without modification in the runtime environment, by sim-
ply substituting simulated resources managers with “real”
implementations.

Work is under way to improve the simulation environ-
ment by augmenting it with an interface for the graphical
visualization of the properties of the simulated ant algo-
rithms. We also plan to use Anthill to evaluate properties of
several existing P2P algorithms, such as persistent storage
services [15, 9] and distributed lookup services [14, 4]. We
are implementing ants that mimic the behavior of Freenet,
for the purpose of comparison with Gnutant and studying
how the reliability, availability and performance of hash-
based routing may be improved. Finally, we plan to exploit
evolutionary programming techniques to improve the per-
formance of the resulting algorithms.

References

[1] D. Anderson. SETI@home. In A. Oram, editor,Peer-to-
Peer: Harnessing the Benefits of a Disruptive Technology,
chapter 5. O’Reilly & Associates, Mar. 2001.

[2] Ö. Babaŏglu, H. Meling, and A. Montresor. Gnutant: Free-
Text Searching in Peer-to-Peer Systems. Technical Report
UBLCS-02-05, Dept. of Computer Science, University of
Bologna, Apr. 2002.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm Intelli-
gence: From Natural to Artificial Systems. Oxford Univer-
sity Press, 1999.

[4] F. Dabek et al. Building Peer-to-Peer Systems With Chord, a
Distributed Lookup Service. InProc. of the 8th Workshop on
Hot Topics in Operating Systems (HotOS), Schloss Elmau,
Germany, May 2001. IEEE Computer Society.

[5] P. Grasse. La reconstruction du nid et les coordinations in-
terindividuelles chez bellicositermes natalensis et cubitermes
sp. Insectes Sociaux, 6:41–81, 1959.

[6] B. Horling, V. Lesser, and R. Regis. Multi-Agent System
Simulation Framework. InProc. of the 16th IMACS World
Congress 2000 on Scientific Computation, Applied Mathe-
matics and Simulation, Lausanne, Switzerland, Aug. 2000.

[7] Project JXTA. http://www.jxta.org.

[8] G. Kan. Gnutella. In A. Oram, editor,Peer-to-Peer: Har-
nessing the Benefits of a Disruptive Technology, chapter 8.
O’Reilly & Associates, Mar. 2001.

[9] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. InProc. of the 9th Inter-
national Conference on Architectural support for Program-
ming Languages and Operating Systems, Cambridge, MA,
Nov. 2000.

[10] A. Langley. Freenet. In A. Oram, editor,Peer-to-Peer: Har-
nessing the Benefits of a Disruptive Technology, chapter 8.
O’Reilly & Associates, Mar. 2001.

[11] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The
Swarm Simulation System, A Toolkit for Building Multi-
Agent Simulations. Technical report, Swarm Development
Group, June 1996. http://www.swarm.org.

[12] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, Apr. 1998.

[13] Peer-to-Peer Working Group. http://www.p2pwg.org.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of the ACM SIGCOMM’01, San Diego, CA, 2001.

[15] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer
Storage Utility. InProc. of the 18th ACM Symp. on Oper-
ating Systems Principles, Canada, Nov. 2001.

[16] C. Shirky. Listening to Napster. In A. Oram, editor,Peer-
to-Peer: Harnessing the Benefits of a Disruptive Technology,
chapter 2. O’Reilly & Associates, Mar. 2001.

[17] G. Weiss.Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. MIT Press, 1999.

