
PLUG AND PLAY FOR TELECOMMUNICATION FUNCTIONALITY -
ARCHITECTURE AND DEMONSTRATION ISSUES

Finn Arve Aagesen, Bjarne E. Helvik,
Ulrik Johansen and Hein Meling
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

ABSTRACT

A plug-and-play (PaP) architecture to be applied for specification and execution of
telecommunication systems functionality is presented. The architecture is based on a theatre
metaphor. Plays define the functionality of the system. PaP components are realised by actors
playing roles defined by manuscripts. An actor's capabilities define his possibilities for
playing various roles. The usability of the architecture is validated through specification,
implementation and testing of a PaP support system and a tele-school application
demonstrator. A PaP support system that meets the flexibility and adaptability requirements
and parts of the tele-school application has been implemented and validated. The
implementation is based on Java RMI.

INTRODUCTION

Grade of network intelligence is here defined as the efficient flexibility in the
introduction of new teleservices and the efficient flexibility in the execution of teleservices. IN
(Intelligent Networks) [ITU92], TINA (Telecommunication Information Networking
Architecture) [TINA95], Mobile Agents and Active Networks ([Bies97], [Bies98], [Raza99],
[Tenn97]) are all solutions aimed to improve the network intelligence.

Plug-and-play (PaP) for telecommunications means that the hardware and software
parts, as well as complete network elements, that constitute a communication system, have the
ability to configure themselves when installed into a network and then to provide services
according to their own capabilities, the service repertoire and the operating policies of the
system. Plug-and-play functionality means utterly increase of network intelligence.

The concept PaP stems from the personal computing area. PaP simply means that you
plug-in and then the system works. In these systems, the plugged in component as well as the
framework has a predefined functionality. We denote this static PaP. A more general kind of
PaP is when the plugged-in unit has a set of basic capabilities, but its functionality is defined
as a part of the plug-in procedure and it can be changed dynamically. We denote this as
dynamic PaP. An example is a cellular phone which obtains the services it provides
depending on its inherent capabilities, which user that logs on, and which network it is
attached to.

With dynamic PaP, the definition of individual components, and possibly the overall
structure of components, can be changed on-line. One aspect of dynamic PaP is to change the
services that a component provides. Another aspect is to propagate the ability to use the

service to all potential service users. The focus of this paper is on dynamic PaP, and from
now on PaP means dynamic PaP.

This paper is related to a project: PaP for Network and Teleservice Components
(http://www.item.ntnu.no/~plugandplay), which vision is a flexible concept for
telecommunication services and network functionality that can be used to increase the
efficiency of, and to simplify installation, deployment, operation, management, maintenance
and evolution of functionality handling software.

The general project goal is to specify, develop and experiment with parts of an
architecture concept for dynamic PaP. The general research hypothesis is that an architecture
concept for PaP is feasible and that it is also feasible to implement and experiment with part
of such an architecture based on available software technology.

A PaP system, as discussed here, shall be: A): Flexible and adaptable, B): Robust and
survivable, and C): QoS aware and have resource control. In [Aage99], 9 requirements to
realise the Functionality Classes A) - C) are specified. The PaP reference model [Aage99] is
the basis for realising the Functionality Class A), which further is a basis for realising the
Functionality Classes B) and C). The Class A requirements as well as the PaP reference
model is presented in the next section. Within the Functionality Classes B) and C) research
work is going on within the following four areas 1): PaP for Teleservices [Jacq2000], 2):
Dependability and Intrusion Avoidance in PaP systems, 3): PaP for Mobile Components, and
4): Capability Handling in PaP systems.

A construction model for a software system that realises Property Class A [Joha99a],
has been implemented using Java RMI [Joha01], and a PaP demonstrator based on a Tele-
school application has been specified and partly implemented [Joha99b]. The purpose of this
demonstrator is both to demonstrate the realisation of the Property Class A, and to be the
fundament of a testbed for the research on the Functionality Classes B and C. The goal is a
PaP support system which implements all the Property Classes A)-C).

The objectives of this paper is to present our basic conceptual framework for handling
dynamic PaP and also the demonstrator application to be used for the validation of the
conceptual framework. A functional model denoted as the PaP reference architecture is first
presented. Thereafter a design architecture supporting the implementation of the PaP
reference architecture is presented. The tele-school application is then presented, before
finally giving summary and conclusions.

A PAP REFERENCE ARCHITECTURE

PaP components
The entities in the system subject to PaP are the PaP components, which are real-world

active hardware and/or software modules. These can be combined hardware/software
modules with one or more external hardware interfaces, or pure software modules. These
must interface with a software platform capable of running PaP application software. Pure
hardware modules are not feasible in the context of dynamic PaP. PaP components will
coexist with components that do not have the PaP functionality. These are denoted as non-PaP
components. The properties of Functionality Class A, which are related to flexibility and
adaptability require:

1) a system structure and functionality that is not fixed (adding, moving, removing
components and changing component functionality according to needs and capabilities),

2) that new components, their external services capabilities and needs are found
automatically (awareness of new components and capabilities, propagation of needed
information about changes, propagation of needed new functionality),

3) a continuous adaptation to the environment and operation strategies/policies (new
component functionality, new teleservices, new service and network management
functionality, new policy functionality),

4) containment and aggregation.

The functional object model to be defined in the following subsection aims to be a basis for
satisfying these requirements.

The functional object model
PaP components are composed from (one or more) interacting instances of PaP

functional objects, where each instance is defined by reference to an object type. This means
that the PaP component functionality is defined by a functional object model consisting of
functional PaP objects.

ISO's reference model for Open Distributed Processing (ODP) [Duts96] defines the
enterprise, computational, information, engineering and technical viewpoints. The viewpoints
of primary interest with respect to PaP is the computational and the engineering viewpoints.
The PaP components are basically engineering viewpoint objects. The PaP components have
a computational viewpoint specification by the PaP functional objects, which are basically
computational viewpoint objects. The computational model will also model the information
which is subject to dynamic changes caused by the behaviour. Information models are
supplementary models supporting the behaviour models.

Most object-oriented systems supports dynamic creation and removal of individual
object instances. While this may be sufficient for static PaP, dynamic PaP requires in addition
that:

• it is possible to change the definition of object instances and object instance structures, i.e.
to change their type,

• to propagate the effect of such changes to involved object instances.

Thus, dynamic PaP requires a PaP support system with the ability to manipulate type
definitions, and to dynamically change object behaviours and object structures according to
the changes of the corresponding types. This situation has many similarities with the theatre,
which is chosen as a model to describe the PaP functionality of the system. The relationship
between important PaP concepts is shown in Figure 1, while Figure 2 illustrates the basic
structure of a PaP system.

An actor is a generic object with a generic behaviour. Actors are able to behave
according to a manuscript. The repertoire consists of plays which is defined by roles and the
role is formalised my a manuscript. These concepts have meaning similar to as these concept
are used in the theatre context. The manuscript is the functional PaP object type definition. An
instance of a PaP functional object, also here denoted as a role-figure is realised by an actor
which is executing the manuscript. An actor is able to play various roles. Different from a
theatre, and caused by the nature of telecommunication service providing systems, an actor
can have its behaviour related to various plays at a time. However, an actor performs only one
manuscript at a time. A PaP component, however, can handle various manuscripts by using
various actors playing different manuscripts.

A manuscript defines the entire behaviour of an actor. A role-session is a projection of
the behaviour of the actor with respect to one of its interacting actors. The entire role as well
as the role-sessions are EFSMs (Extended Finite State Machines). The entire role can be
composed by logically joining the role-sessions. The manuscript both specifies the

Play

Role-session

Interface

Role

Repertoire

Manuscript

is defined by

1

1

*

**

implements

demonstrates
projects

11

1

Legend:

1

Capabilities
*

*

1
1

1

1

implements

*

describes the
superposition of

1

1

Director

Active entities

Application
role-figure

Actor
1

1

1
*

*

*

has

corresponds to

needs

*

*

Information-
units

manages

DynamicsTerms

*

:The Director constitutes a Director role-figure, which
Role is defined by a Manuscript executed by an Actor

*

manages

is

has

Director
role-figure

1

1

Component

implements
*

1

has

1

1

executes

* 1

Figure 1. PaP concepts

Director
role-figure

Actor

Repertoire-
base

Playing-
base

Manuscript-

base

Application
role-figure

Actors with assigned functionality

Component

Actors without assigned roles

Component

Figure 2. PaP system - Basic structure

cooperating PaP objects, the interactions with the cooperating PaP objects and internal
behaviour resulting from an incoming interaction.

An actor also has a defined set of capabilities, which is the ability or power to do
something. Capabilities are inherent properties of an actor, which can not be removed,
replaced or copied without removing, replacing or copying the entire actor. The capabilities
are the result of the available hardware functionality connected to the hardware executing the
actor software behaviour, but also the quantitative aspects such as processing capacity.

Capabilities also encompass proprietary information and authorization as found in
agents. In other words, an actor is a generic abstraction of the whole or part of the
functionality of a real-world PaP component as defined above. The actors capability will
define which real-world PaP component functionality it is able to act on behalf of.
Capabilities are further discussed in [Aage99].

A play is a defined autonomous functionality. The play defines the context for
relationships between PaP objects as well as their behaviour. One important PaP object
instance necessary to initialise any play is the director role-function. A director behaviour is
also defined by an instance of a play.

An actor has three distinct behaviour phases: 1) the plug-in phase, 2) the play phase and
3) the plug-out phase. The initiative to the plug-in of an actor may come from a role-figure

with another role than the role that is going to be played by the actor that is to be
plugged in, i.e. the initiative can come from an actor playing the same or another role. The
initiative to plug-out can come from the same role-figure as the plug-out role-figure. The
director role-figure guides actors in the plug-in phase as well as in the plug-out phase.
Important functionality related to the plug-in-phase is actor identification, actor access
control, actor capability control and actor resource and QoS negotiation and allocation.

PaP components are realised by actors, and actors are the entities constituting
instances (application role-figures) of the PaP functionality objects. Figure 2 illustrates a
system with some actors without assigned roles, one director role-figure, several components
realised by application role-figures, one instance of a repertoire-base, one instance of a
manuscript-base and one instance of a playing-base. For simplicity the system illustrated is a
centralised system. The manuscript-base has the manuscripts used by the actors to play their
roles. The playing-base keeps a structural model of the instances of PaP objects that is
actually playing. The repertoire-base keeps an overview of the potential plays and roles.
Actors get an instance of a manuscript from the manuscript-base via the director. The
manuscript of the director is also a part of the manuscript-base.

PaP support functionality
The following functions are needed: PlayPlugIn, PlayChangesPlugIn, PlayPlugOut,

DynamicDetectionOfNeedsForActors/Plays/Roles, ActorPlugIn, ActorPlugOut,
ActorBehaviourPlugIn, ActorChangeBehaviour, ActorBehaviourPlugOut, ActorPlay,
Subscribe, RoleSessionAction and ChangeActorCapabilities. For details see ([Aage99],
[Joha99a]).

The functions: ActorBehaviourPlugIn, ActorPlay and ActorBehaviourPlugOut comprise
the initialisation of a generic actor pending for a manuscript, performing the manuscript, and
finally making the actor pending for a new manuscript. This functionality with the addition of
ActorChangeBehaviour is denoted as the basic PaP functionality. The actor is initialised by
first activating its director. An actor negotiates with a director role-figure in order to obtain
its behaviour. The director role-figure will create an instance of a manuscript with all
necessary parameters bound particularly for the actor. The director role-figure also acts as a
binding object which helps to establish communication or interactions among actors. After

receiving a manuscript from the director role-figure, an actor will start acting according to the
specification described in the manuscript. From this point on in time, the actor becomes
autonomous and independent of the director role-figure and constitutes an application role-
figure until it terminates or want to change its behaviour.

PAP SYSTEM - IMPLEMENTATION DESIGN

As already explained, there are two types of role-figures, the application role-figure and
the director role-figure. A relation between an application role-figure and a director role-
figure must always exist. Relations between director role-figures will give a possibility to
obtain a distributed solution for the director role. A PaP system with more than one director
needs administrative domains to manage the federation of responsibility between director
role-figures. Figure 3 shows the structuring of the needed functionality into five layers.

Director
(Actor)

PaP communication Infrastructure (PCI)

PaP applications
(Actors)

Non-PaP applications

PaP Extended
Management (PXM)

PaP Actor Support (PAS)

Infrastructure
Layer

Non-PaP applications
interfaced to PaP appl.

PaP specific
applications

PaP Extensions

PaP Dynamic
Basic Support

PaP Static Basic
Support

Pa
P
sp
ec
if
ic
L
ay
er
s

A
pp
lic
at
io
ns

PaP Extended
Support (PXS)

PaP Node Execution Support (PNES)

Figure 3. PaP layered model

To describe the software architecture, some implementation related concepts are
needed. The most obvious hardware and software specific concepts involved are node and
process/thread. A node maps directly to a computer and a process/thread will map one-to-
one to an operating system process or thread. Figure 4 illustrates the software execution
architecture. The Actor-environment-execution-module (AEEM) is a process/thread that
executes a collection of actors with associated PaP Actor Support (PAS). A collection of
actors is here one or more actors constituting application role-figures or director role-figures.

All layers in Figure 3, except for PaP specific applications and non-PaP applications
are completely independent of the applications themselves. The PaP functionality will have
to interface to some infrastructure technology at the bottom layer, and may interface with any
type of non PaP application through the top layer.

A PaP communication infrastructure (PCI) architecture based on standard solutions,
will usually consist of three layers with the operating system functionality (e.g. Unix or
Windows NT) at the bottom, the network communication functionality (e.g. TCP/IP) in the
middle, and some distributed system solution (e.g. CORBA ORB or Java RMI) at the top. The
PCI top layer may be omitted, but that will require a more complex implementation of the
interfacing module PNES if the PaP functionality require a distributed system solution.

Node 4Node 1

AEEM1 AEEM1

Node 3

AEEM1

Node 2

AEEM1AEEM2

A1 A2

PAS

A3

PAS

PNES

Opsys/network

D1

PAS

PNES

Opsys/network

AEEM2

A5

PAS

D2

PAS

PNES

Opsys/network

D4

PAS

PNES

Opsys/network

Communication network

Legend: A1 - A5: Actor1 - Actor5; A1, D2: Director1, Director2
AEEM1 – AEEM2: Actor-environement-execution-module1, Actor-environment-execution-module2

Figure 4. Example view of PaP software execution architecture

PaP Node Execution Support (PNES) makes it possible to run PaP software on a node,
and for PaP functionality (i.e. executed by actors) on different nodes to interact with each
other. PNES is able to receive requests from other PNESes, interpret these requests and take
proper actions. PNES will also do start-up and initialisation of PASes or PCIs if that is
required. PNES implements the PaP functionality that is termed the PaP Static Basic Support
in the model. Static in this sense means that changes/extensions of the PNES functionality
must be backward compatible with earlier versions because this functionality represents the
“bootstrap” that is necessary to be able to run PaP applications. Only this functionality must
be manually installed at a node before PaP applications can be installed and activated.

PaP Actor Support (PAS) makes it possible to create actors within the context of an
operating system process/thread, to give these actors behaviour, and to communicate
information between these actors and their environments. There will be one PAS instance
within each Actor-environment-execution-module (AEEM) as defined above.

Director is both responsible for the management of the PaP application definitions, i.e.
its part of the repertoire- and manuscript-bases, and for the management of information
concerning actors, i.e. its playing-base. A director is involved in many of the functions related
to the services provided by PAS.

PaP Extended Management (PXM) is additional PaP services not required for the PaP
support functionality, but rather PaP extensions related to PaP operational quality. These
services include functionality related to a robust and survivable PaP system, and a PaP system
to be QoS aware and to provide resource control. PaP Extended Support (PXS) is required
for the utilisation of PaP Extended Management (PXM) from actors.

PaP applications is the collection of actors implementing application role-figure. Actor
instances are created using the ActorPlugIn function, they get their behaviour using

ActorBehaviourPlugIn and ActorChangeBehaviour, they start execution using ActorPlay, and they
terminates when using ActorPlugOut.

Non-PaP applications are allowed to interact with actors directly without going via the
control of PAS. Such interactions can be done without the intervention of any parts of the PaP
system. However, such interactions must not result into control actions that are in conflict
with the responsibility of the PaP System. Non-PaP software is also allowed to use the PaP
functionality supported by PAS. This possibility is actually necessary to be able to install and
start the first operational PaP system. In this case the non-PaP application may interface to the
same interface as used by the PaP specific applications. The non-PaP application, however,
will and must perform within a separate process/thread and must be considered as one specific
actor as seen from the PAS system point-of-view.

THE TELE-SCHOOL APPLICATION

The specification of the demonstrator is based on the need to validate all aspects of the
basic PaP functionality, some teleservice functionality for wireless applications and some
functionality to satisfy some of the requirements of the Functionality Classes B and C.

Play
School

Play
Lecture-on-demand

Actor using Manuscript
RTLServer

Actor using Manuscript
SchoolServer

Play
Real-time-lecture

Play
Student-off-line support

Actor using Manuscript
SchoolUserInt.

Actor using Manuscript
SchoolClient

Legend:
NonPaP: Non PaP components

Defines a "play containment" relation
Defines a manuscript or role session activation
relation
The role-session provider
The role-session user

<relations not shown><relations not shown>

NonPaP
MMPlayer

Actor using Manuscript
WindowContr.

Information view

Computational view

Figure 5. Example real-time lecture architecture

Tele-school is an application to be used as a demonstrator. Its main concepts are
school, school application manager, students, teachers, courses and lectures. Basic

communication modus between teachers and students, where teacher and students physically
may be located in different geographical areas are: interactive dialogue (chat type service),
addressed messaging (E-mail type service), and non-addressed messaging (news type
service).

The multimedia components audio, video and text shall be used for the content
representation. Multimedia PC type equipment shall be used for interaction between
teachers/students and the application system. The tele-school services provided are real-time
lecture, lecture on demand and students off-line support. The first is the real-time lecture
performance by a teacher to attached students. Students may ask questions and get answers
from the teacher. Lecture on demand offers the possibility for students to go through already
performed lectures that has been "electronically recorded". Students may freely select when to
go through the lecture and they also may ask questions to the teacher, which will answer
question when available by using the Student off-line support functionality. Figure 5 shows
role-figure and role-session structure for a real-time lecture.

Behaviour description for the functional design
First regard the example message sequence chart describing a small part of the tele-

school application, shown in Figure 6.

Figure 6. Example interactions between application role-figures in the tele-school

The SchoolUserInterf, SchoolClient and SchoolServer has been identified as three roles to
be played, and the functionality shown in the figure is related to user system log-on, access
verification and the user selection of what type of work to do. This is a part of the real-time
lecture functionality. A set of information elements (e.g. WindowNew and WindowClose) to be
used for role-figure interactions has been identified. Role-sessions are specified as well
defined sequences of interactions between two role-figures and are indicated by the additional
vertical lines in the figure. The first identified role-session used by the roles SchoolUserInterf
and SchoolClient contains the information elements WindowNew, LogonEvent and WindowClose.

SchoolUserInterf SchoolServerSchoolClient

WindowNew(Logon)

LogonEvent
UserVerifyAccessReq

GetDataCnf(data)

WorkTypeEvent

WindowNew(WorkToDo)
GetDataReq(req)

UserVerifyAccessCnf
WindowClose

WindowClose

The SchoolClient role has two role-sessions active at the same time, one with the
SchoolUserInterf and one with the SchoolServer.

Integration with PaP functionality
Figure 6 shows some application specific aspects of the tele-school, in addition to the

identification of roles and role session examples. So how does the PaP specific concepts and
functionality apply together with the tele-school application? The PaP functionality is
generic, but it is important to be aware of how it is integrated into the application, since the
application designers must consider both the application and the PaP functionality.

Figure 7 extends Figure 6 by showing the mapping from roles to actors, the use of PaP
functionality in application execution, and how an application become available for use. Note
that an application-role does not contain the interaction with the director role-figure. This
interaction is a part of the generic actor behaviour. Figure 7 shows that each of the three roles
defined in Figure 6 are played by separate actors, named a1, a2 and a3 forming the
corresponding role-figures.

ctx: non-PaP

d1: Director
role-figure

a2:SchoolClient
Application role-figure

ActorPlugIn(role=SchoolClient)

RoleSessionAction(a1,WindowNew,WorkToDo)

PlayPlugIn(play=TeleSchool)

a3:SchoolServer
Application role-figure

Client Node
Server Node

ActorPlugIn(role=SchoolUserInterf)
a1:SchoolUserInterf
Application role-figure

RoleSessionAction(a2,LogonEvent)
ActorPlugIn(role=SchoolServer)

RoleSessionAction(a3,UserVerifyAccessReq)

RoleSessionAction(a2,UserVerifyAccessCnf)

ActorPlugOut(s3)
RoleSessionAction(a1, WindowClose)

ActorPlugOut(s1)

Figure 7. Example interactions between actors in the tele-school application

In addition there exists another actor, ctx, which has the responsibility of tele-school
application installation and start-up, and an actor d1, which serves as director role-figure for
all actors which constitutes application role-figures. The application has been distributed on
two nodes, namely a client node, which runs the client specific application part, and a server
node, running the parts of the application common to multiple tele-school clients. The actor
implementing the director role-figure has been selected to perform on the server node.

The MSC example shows that the tele-school application has not yet been installed and
is therefore installed by the ctx actor using PlayPlugIn(play=TeleSchool) prior to starting a
client part of the application by using ActorPlugIn(role=SchoolClient). PlayPlugIn is the PaP
function used to install play definitions into the manuscript-base which is managed by the
director role-figure. Play definitions may be changed by PlayChangesPlugIn, and removed by
using PlayPlugOut.

Role-sessions are created by ActorPlugIn and terminated by ActorPlugOut. In addition
ActorPlugIn will imply the creation of an actor instance if no existing actor is able to satisfy
the requirements to cooperating actor considering location, role and capabilities specified by
the ActorPlugIn parameters. ActorPlugOut will destroy an existing role-session between two
role-figures, and may imply the termination of an actor if that has been specified as a
parameter to ActorPlugOut or if the actor's termination condition specifies so.

Figure 7 indicates that the director is involved in the execution of many of the PaP
specific functions such as PlayPlugIn, ActorPlugIn, ActorPlugOut. This is necessary, because
the director serves, not only the manuscript-base, which is as a repository for play
specifications, but also serves the playing-base, which is a repository for existing actor
instances and the role-figures constituted. This means that, as seen from actors, the director
become a central server. The PaP specific function RoleSessionAction, which is used for
communication on established role sessions, does not involve the director.

Two levels of plug-in/plug-out is illustrated. First, the plug-in of the specification of the
PaP application functionality (i.e. component installation) done by the PlayPlugIn, then the
plug-in/out of the applications themselves (i.e. component execution) done by
ActorPlugIn/ActorPlugOut. Note that ActorPlugOut does not necessarily mean that the
associated actor terminates. It is the interaction sequence, i.e. the role-session between two
application role-figures that is terminated.

Not shown in the figure is the possibility to dynamically change both component
definitions and actors behaviour for an operational system by using PlayChangesPlugIn and
ActorChangeBehaviour, respectively. Procedures have been defined for dealing with these
changes that may result from actor requests.

SUMMARY AND CONCLUSIONS

A dynamic PaP architecture concept, as well as an implementation design of this
architecture concept, has been presented. The objective of this work is to simplify and speed
up the tasks of deployment, installation, operation, management, maintenance and evolution
of software related to telecommunication equipment and services functionality. A tele-school
application to be used for demonstration and validation of the various elements of the plug-
and-play architecture has also been presented.

The PaP support system that meets the flexibility and adaptability requirements and
parts of the tele-school application has been implemented and validated. The implementation
is based on Java RMI. We feel that our approach has lead to a powerful solution for the
handling of adaptability and flexibility, and that it is a suited basis for the extension of the
functionality to comprise the functionality classes B and C, which comprise robustness and
survivability, and QoS awareness and resource control, respectively. These extensions are at
the moment subjects for ongoing research.

The dynamic PaP architecture is supporting PaP components which are real-world
concrete active hardware and software modules. The PaP component functionality is defined
by a PaP functional object model, consisting of functional PaP objects. A functional PaP
object is an instance of a PaP object type. Dynamic PaP requires that it is possible to change
the behaviour of an object and to propagate the effect of such changes. A functionality
analogous to the theatre is chosen as a basis for a reference architecture for PaP. The most
central concepts are actor, director, role, role-figure, play, manuscript and capability. An
actor's capabilities define the possibilities for playing various roles according to manuscripts
and then to constitute various role-figures.

REFERENCES

[Aage99] Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling, Rolv Braek
and Ulrik Johansen, Towards A Plug and Play Architecture for Telecommunications,
Proceedings of IFIP SMARTNET'99, Bangkok, November 1999.

[Bies97] Andrzej Bieszczad and Bernard Pagurek, Towards Plug- and Play Networks with
Mobile Code, Proceedings of ICCC'97, November 1997.

[Bies98] Andrzej Bieszczad and Bernard Pagurek and Tony White, Mobile Agents for
Network Management, IEEE Communications Surveys, volume 1 number 1, 1998.

[Duts96] Joubine Dutszadeh and Elie Najm, Formal Support for ODP and Teleservices,
Proceedings of the IFIP/ICCC conference on Information Network and Data
Communication, June 1996.

[ITU92] ITU-T, Principles of intelligent network architecture, October 1992.
[Jacq00] Jacqueline Floch and Rolv Bræk, Towards Dynamic Composition of Hybrid

Communication Services, IFIP TC6 Sixth International Conference on Intelligence in
Networks, Vienna, September 2000.

[Joha99a] Ulrik Johansen, Finn Arve Aagesen, Bjarne E. Helvik and Hein Meling, Design
Specification of the PaP Support Functionality, Plug-and-Play Technical Report,
Department of Telematics, NTNU, 1999-12-10, ISSN 1500-3868

[Joha99b] Ulrik Johansen, Finn Arve Aagesen, Bjarne E. Helvik and Hein Meling,
Demonstrator - Requirements and Functional Description, Plug-and-Play Technical
Report, Department of Telematics, NTNU, 1999-12-10, ISSN 1500-3868

[Joha01] Ulrik Johansen, Plug-and-play – Software Design, Implementation and Use. Plug-
and-Play Technical Report, Department of Telematics, NTNU, 2001-02-10, ISSN 1500-
3868.

[Raza99] S. K. Raza and Andrzej Bieszczad, Network Configuration with Plug and Play
Components, The Sixth IFIP/IEEE International Symposium on Integrated Network
Management

[Tenn97] David L. Tennenhouse, Jonathan M. Smith, David Sincoskie, David J. Wetherall
and Gary J. Minden, A Survey of Active Network Research, IEEE Communications
Magazine, Volume 35 no 1, 1997, pages 80-86.

[TINA95] TINA Consortium, TINA-C Deliverable: Overall Concepts and Principles of
TINA V1.0, February 1995.

