Peer-to-Peer Document Sharing
using the Ant Paradigm

Hein Meling? Alberto Montresor Ozalp Babaglu *

Abstract

The peer-to-peer (P2P) paradigm for building distributed applications has recently
gained renewed attention, partly due to the enormous success of systems like Napster
and Gnutella. Subsequently, a multitude of projects focusing on anonymity, security,
routing and reliability aspects of P2P have been initiated. A framework that supports
the design evaluationand implementatiorphases of P2P application development

is currently missing. The Anthill project is an attempt to fill this void.

In this paper we give a brief overview of Anthill and describe Gnutant, a doc-
ument sharing application that combine the scalability property of Freenet with the
free search capabilities of Gnutella. In addition, we present preliminary simulation
results obtained by running the Gnutant application in the Anthill simulation envi-
ronment. The simulation results indicate that after an initialization period, Gnutant
is effective in finding documents.

1 Introduction

Several recent distributed applications based onpter-to-peer(P2P) paradigm have
drawn media headlines and industry attention. Informally, P2P applications are composed
of a collection ofpeernodes that cooperate in order to perform some task and share their
resources by direct exchanges [10]. In the P2P model, each node may be both a provider
and consumer of services (i.e.pae, which differs from the client-server model where

only a relatively small number of server nodes provide services to a potentially large
number of client nodes.

The enormous interest around P2P is motivated by the success of Napster [11] and
Gnutella [9], two file-sharing applications that have been able to attract millions of users.
In addition to its popular appeal, P2P also offers interesting technical properties. In par-
ticular, the completely decentralized nature of the model enables development of appli-
cations with reliability and availability characteristics previously unimaginable over the
Internet. Other application domains where P2P technology has been successfully applied
include scientific computing [1] and messaging and collaborative tools [7]. And these are
just a few examples of a much broader class of potential applications suitable for the P2P
model.

Since P2P computing involves distribution of resources and services across a network
of independent systems, new issues related to reliability, availability and security arise.

iDepartment of Telematics, Norwegian University of Science and Technology, O.S. Bragstadsplass 2A,
N-7491 Trondheim (Norway), Emaiimeling@item.ntnu.no

*Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna
(Italy), Email: {babaoglu,montresor} @CS.UniBO.IT

1

However, traditional techniques for dealing with them are not directly applicable to P2P
systems due to scalability problems and the extremely dynamic nature of the operating en-
vironment where nodes may be added and removed in rapid succession. Recent industry-
lead initiatives such as JXTA and the Peer-to-Peer Working Group are attempts to address
these problems, focusing mainly on standardizing the communication infrastructure on
which peers operate [10, 8].

Anthill [2] is yet another framework for P2P application development, deployment and
testing. The goals of Anthill are to: (i) provide an environment for simplifying the de-
sign and deployment of new P2P systems, and (ii) provide a “testbed” for studying and
experimenting with P2P systems in order to understand their properties and evaluate their
performance. Anthill is based on theulti-agent system@I1AS) paradigm [6], in which
a collection ofautonomous agentsan move around, observe and modify their environ-
ment, performing predefined tasks. MAS often exhibit a property caleam intelli-
gence in that a collection of simple agents with limited individual capabilities achieves
“intelligent” collective behavior [12], enabling them to solve problems that are beyond the
capabilities or knowledge of individual agents. MAS are particularly suitable for solving
problems in highly dynamic environments [5], subject to incomplete and imprecise infor-
mation [13] and without centralized control. Thus, we believe that the MAS paradigm is
an appropriate basis for modeling and building P2P applications, which exhibit exactly
these properties. A particular type of MAS are based on the ant colony metaphor, in which
antstake the role of agents. Throughout the paper we adopt terminology derived from the
ant paradigm.

Anthill simplifies P2P application development and deployment by freeing the pro-
grammer of all low-level details including communication, security and ant scheduling.
Thus, developers can focus on writing appropriate ant algorithms for solving a particu-
lar problem, using the Anthill API and defining the structure of the P2P system. Anthill
also includes a simulation environment to help analyze and evaluate the behavior of P2P
systems. A particular advantage provided with Anthill is that the same ant algorithm
implementations can be used without modification in both the simulation and real net-
work environments, thus avoiding the cost of maintaining two different implementations.
This important feature allows developers to tune their ant algorithms in the simulation
environment, and then deploy them directly in a real network environment.

In this paper we prese@nutant a novel document sharing application that provides
the user with free search capabilities without imposing strict limits on its scalability. This
is achieved by implementing a set of ant algorithms and related data structures using the
Anthill framework, that facilitates routing based on the query string entered by the user.
The routing tables in the network are continuously evolving to improve the search perfor-
mance. The collective behavior of individual ants enable Gnutant to evolve a replicated
and distributed document index with high availability and strong fault tolerance charac-
teristics. In addition to its novelty, Gnutant also illustrates the simplicity of developing
P2P applications using Anthill.

The rest of this paper is structured as follows. Section 2 introduces the main compo-
nents of the Anthill framework and their interfaces. Section 3 presents the details of the
Gnutant document sharing application and its implementation in the Anthill simulation
environment. Section 3 also includes some preliminary simulation results of the Gnu-
tant application. Section 4 discusses other work that relates to the Gnutant application.
Finally, Section 5 concludes the paper and indicates directions for future work.

Nest

N2
N1 Resource Resource
P Storage ®Storage

Document Storage
URL Storage

Ant
Scheduler

e

Communication
Layer

:

Routing Storage

N3
Resource
Storage

N6 Resource
Storage

N4 Resource
P Storage

N
5 Resource
§ Storage

Figure 1: Overview of a nest network. Figure 2: The architecture of a nest.

: Network

2 Anthill Overview

Anthill uses terminology derived from the ant colony metaphor. A P2P system based
on Anthill is composed of a network of interconnecteekts Each nest is a peer entity
capable of performing computations and hosting resources. Nests handle user requests
by generating one or monts— autonomous agents that travel across the nest network
trying to satisfy the request. Ants communicate indirectly with each other by modifying
their environment (i.e., modifying information stored in nests.)

In this section, we introduce thenthill modeland describe its core entities. We then
briefly discuss the characteristics of timatimeand thesimulationenvironments included
in Anthill. These two distinct implementations of the model are used for real network
deployment and for evaluation purposes, respectively.

2.1 The Anthill Model

The Anthill model consists of two entitiesaants and nests A nest networks the in-
frastructure on which P2P applications run and corresponds to the “can communicate
directly” relation between nests (see Figure 1.) It is an instance afldrocnetwork in

that there is no fixed structure and its topology is highly dynamic as nests come and go
and discover each other on top a communication substrate (e.g., TCP/IP). Each nest s ca-
pable of performing computations and storing information on behalf of either its owner or
visiting ants. Ants are autonomous agents that move across the nest network, interacting
with nests that they visit in order to accomplish their task. The actual services provided
by a P2P application are implemented throwgit algorithms See Section 3.1 for two
example algorithms. In the following, the termnt speciess used to refer to a set of ant
algorithms that work collectively to solve a problem (i.e., provide a particular service.)

2.1.1 The Nest

Figure 2 illustrates the architecture of a nest that is composed of three logical modules:
resource storage, ant scheduler and communication layer. Resource storage modules are
specialized depending on the type of information they contain and each nest includes those
that it needs (the nest in Figure 2 has three such modules). Each storage module type is
associated a set of policies for managing the available (inherently limited) memory or
disk space. For example]east-recently-usefl_.RU) policy may be used to discard doc-
uments when space is needed for new documentsamtgchedulemodule multiplexes

public interface Nest { public interface AntView {

void request(Request request, boolean move(Nestld nid);

ReplyListener listener); Storage getStorage(String name);
void addAntSpecies(AntFactory factory); void addNeighbor(Nestld nid);
void addNeighbor(Nestld nid); Nestld[] getNeighbors();
void removeNeighbor(Nestld nid); void reply(Reqld rid, Reply reply);
Nestld[] getNeighbors(); }

}
Figure 3: TheNest interface. Figure 4: TheAntView interface.

the nest computation resource among visiting ants. It is also responsible for enforcing
nest security by limiting the actions and resources available to foreign ants. Finally, the
communication layeis responsible for the movement of ants between nests and for nest
network topology management by monitoring reachability of known remote nests.

Each nest has a unique identifier. An ant must know the identifier of a remote nest in
order to be able to move to it. Ants find out about remote nests by interrogating the local
nest so that they may explore new regions of the nest network. Each nest maintains a set
of neighborsas the remote nests that it knows about. As noted above, the collection of
neighbor sets defines the nest network which may be highly dynamic: a nest may find out
about a new neighbor either through the user or a visiting ant, and it may forget about a
known nest if the communication layer considers it unreachable.

2.1.2 Requests and Replies

Users interact with nests by performing requests and listening for replies. For example,
in a music-sharing network, a request would be a query for the songs of a particular artist,
and the reply would contain a set of URLS to songs by the given artist. In a P2P lookup
service associating name-value pairs (such as Chord [4]), a request would be a lookup for
a particular name, and the reply would contain the value associated with that name.

Anthill does not impose any particular format on requests and replies. The interpre-
tation and satisfaction of requests are delegated to ants. Furthermore, Anthill does not
specify which services a nest should provide. When a nest receives a request from its
user, it selects an ant species that is appropriate for the request from a set of ant species
known to it. This set is dynamic, as new ant species may be installed by the user, or ants
belonging to new species may arrive from remote nests.

InterfaceNest shown in Figure 3 contains the methods that may be invoked by the P2P
application to interact with a nest. The main method of this interfacegigest(), which
is used to perform new requests and to register a listener for replies. Furthermore, the
interface also provides methods for nest administration, such as addition and removal of
neighbors and registration of new servicast(specie9

2.1.3 Ants

Ants are generated by nests in response to user requests; each ant tries to satisfy the
request for which it has been generated. An ant will move from nest to nest until it fulfills
its task, after which it “may” return back to the originating nest. Ants that cannot satisfy
their task within atime-to-live(TTL) parameter are terminated. When moving, the ant
carries its state, which may contain the request, results or other ant specific data. Note
that the ant algorithm itself need not be transmitted if the receiving nest already knows it.
The behavior of an ant is determined by its current state and its algorithm, which may
be non-deterministic. For example, an ant may probabilistically decide not to follow

what is believed to be the best route for accomplishing a task, and choose to explore
alternative regions of the network. Ants must implemeni®aninterface (not shown),
which basically consists ofmn() method. Theun() method describes the ant algorithm
and is executed at each nest visited during the ant’s trip.

2.1.4 AntView — Limiting the Actions of an Ant

When a nest invokes thein() method of an ant, an object implementing thetView
interface (Figure 4) is passed to the method. This interface contains those actions that the
ant is allowed to perform when executing within the nest. These include:

e move to another nest specified by its identifier;

e obtain access to local data storages;

¢ inform the nest of the existence of additional neighbors by adding their identifiers;
e obtain the neighbors known to the local nest;

¢ notify the nest about a request for which the ant has produced a reply.

2.2 The Runtime Environment

The runtime environment is a nest implementation for deploying ants in a real distributed
environment. It manages low-level functions such as communication, security, resource
management and ant scheduling. It implementd\is andAntView interfaces, enabling

the execution of ant-based distributed algorithms that perform various services.

2.3 The Simulation Environment

To evaluate new ant algorithms, Anthill includes a simulation environment through which
the behavior of a particular ant implementation may be simulated and assessed. The nest
implementation included in the simulation environment is simpler than the one included
in the runtime environment since remote communication can be achieved through local
interactions. Nevertheless, it is important to note that ant algorithms are totally indepen-
dent from the nest implementation and continue to work in both environments without
any changes.

Each simulation study, calledszenariq is specified using XML by defining the nest
network and a request generator. The nest network is specified through the total number of
nests and the number of neighbors that each nest has. In the current implementation, the
nest network is generated prior to the simulation and assumed to remain static throughout
the simulation. The set of neighbors for each nest are generated randomly over the set of
all nests. We plan to allow dynamic nest networks by specifying the total number of nests
and the neighbor degree pobability distributionsrather than static values. The actual
sequence of requests that are to be satisfied are generated on-the-fly during the simulation
through the request generator. Simulating different P2P applications requires develop-
ing appropriate ant algorithms and a corresponding request generator characterizing user
interactions with it.

The simulation proceeds by executing the sequence of generated requests on the nest
network and by monitoring performance parameters such as the number of request initi-
ated, satisfied, ant moves performed, network generated traffic, etc. Using the simulation
environment, programmers can evaluate several different scenarios and obtain average
figures for the collected statistics.

[User J

Insert Start Download Search Reply
Application Logic Layer ‘
Shared *‘ PP g y
Folder A Insertrequest | Search request Reply
(Neg)
A
Y Y
[Network Layer }

 we |}
" Network =

Figure 5: Gnutant Application Overview.

3 The Gnutant Document Sharing Application

In this section, we present our preliminary experience in using Anthill to build a document
sharing application calle@Gnutant In order to facilitate document searches, Gnutant
builds a replicated document index in which document URLs are stored. The index is
distributed across a network of nests. Different types of ants are used to perform searches
and insertions in the distributed index, as described below.

Figure 5 gives an overview of Gnutant. The user inserts documents for sharing by
simply copying them to a local folder. The user may also issue search queries and listen
for replies, or may select documents for downloading from remote sitesagpleation
logic layerdetects new documents placed in the shared folder and receives search queries
from the user. When a new document is detected in the shared foldeseahrequesis
issued to the local nest in order to advertise the presence of the document to other nests
in the network. A search query is simply passed on to the nessearah requestUpon
receiving a request, the nest will uaet factoriesto generate appropriate ants to handle
the request.

Each nest is configured as shown in Figure 2. It includésa@ment storagér man-
aging documents in the shared folder{JRL storagecontaining URLs to documents;
and arouting storagethat ants may access or modify in order to make routing decisions
or improve the routing of future ants, respectively. Each URL storage in the network
constitutes a portion of the distributed document index.

In Gnutant, each document is associated somata-datacomprised of a set of textual
keywordsand a uniquelocument identifierThe keywords associated with the document
are used by Gnutant for routing and to organize the distributed index, and may be provided
by the user who inserted the document, or obtained automatically from the filename. The
document identifier is composed of the file size and a digest computed over the document
itself, and enable comparison of documents for equality. Thus, different URLS to replicas
of the same document will have the same document identifier. We exploit this property
in order to provide faster downloads of documents; Gnutant may attempt to download
disjoint fragments of the document from multiple locations. Assuming that the replication

6

degree is above a certain threshold, load balancing downloads in this manner will have
several positive effects:

e faster and more timely downloads;
e reduced load on peers providing document replicas;

e increased fault-tolerance and document availability.

An insertion request for a document contains the document identifier, a URL and the
collection of keywords, while a search request simply specifies a collection of keywords.
We say that a document “satisfies a search request” if its set of associated keywords con-
tainsall keywords included in the search request.

3.1 The Gnutant Ant Species

Real world ants, even though of the same species, may have different specializations,
such as workers, soldiers, or queens. The Gnutant species similarly contains arget of
algorithmsdesigned to perform various tasks, such as hunting for documents or updating
the distributed document index. Gnutant includes the following ant types:

¢ InsertAnt:an ant specialized in advertising the existence of documents by insertion
of URLs into the distributed index. It is generated by Gnutant when there is a new
document available in the shared folder, either because the user placed it there or
after the document has been downloaded.

e SearchAnt:an ant specialized in document searches. It is generated by Gnutant
in response to user queries. It exploits the information left in the routing storages
by other ants, trying to determine the shortest path to documents matching the user
query. Upon reaching its TTL, the ant will return to the originator nest backtracking
its path. During the return trip, the ant will update both the distributed index and
the routing storages to reflect its findings.

¢ ReplyAnt:an ant used to reduce the response times of searches. It is generated at
each nest where a SearchAnt locates a document. The ReplyAnt returns immedi-
ately to the originator nest while the SearchAnt may continue its exploration hoping
to find other documents satisfying the search request.

To advertise a new document, an insert request is sent to the local nest. In response,
the nest generates an InsertAnt for each keyword associated with the inserted document.
Similarly, a SearchAntis generated for each of the keywords contained in a search request.
Each of these ants carries the entire search query (list of keywords) and they attempt to
satisfy the given request concurrently, exploring different regions of the nest network
since they will be routed based on their associated keywords. Next we will explain how
this routing mechanism works.

3.1.1 Gnutant Routing

To make routing decisions, both InsertAnt and SearchAnt make use of the specialized
routing storage provided with Gnutant. It is based on the conceptsiied keyword
routing, which is similar to the routing technique used in Freenet [3]. The routing stor-
age associates the hash value of a keyword with a set of nests that are believed to store
URLSs for documents associated with the corresponding textual keyword. As previously
explained, each InsertAnt/SearchAnt instance is associated with exactly one hashed key-
word, and when visiting a nest, an ant may inspect the routing storage using its associated

hashed keyword. If an exact match is found in the routing storage, the ant selects a nest
from the set corresponding to the matching hashed keyword; otherwise, a nest associated
with the “closest” hashed keyword is selected.

The hash value of a keyword is computed using the Secure Hash Algorithm (SHA)
to obtain a 160 bit value. This mapping from the textual string space to the bit string
space enables us to compare hashed keywords to determine their closeness. Furthermore,
hashing the keywords also helps disperse the load evenly on the routing storages due to the
uniformity property of SHA. Basing routing storages on the raw textual keywords would
result in highly unbalanced load since keywords tend to be highly clustered in textual
string space.

The notion of closeness between hashed keywords is fundamental to Gnutant’s routing
scheme. It allows nests to become biased toward a certain portion of the hashed keyword
space. If anestis listed in a routing storage under a particular hashed keyword, it will tend
to receive more requests for hashed keywords similar to that hashed keyword. Moreover,
nests become specialized in storing URLs of documents having similar hashed keywords,
since forwarding a request will result in the nest itself gaining a URL for the requested
document. This clustering property will improve the search performance over time as the
routing storages evolve their knowledge, enabling ants to quickly find the relevant region
in the nest network.

3.1.2 Gnutant Algorithms

The algorithm for an InsertAnt is given in Algorithm 1. The ant constructor takes three
parameters: the identifier of the inserted document, the document URL, and the hashed
keyword associated with this ant. InsertAnt also carry the path followed by the ant, al-
lowing it to avoid duplicate visits to the same nest. When an InsertAnt visits a nest, it
first adds the URL to the local URL storage, associating it with the provided document
identifier. Next, it updates the routing storage by associating the hashed keyword with
the ant’s originating nest. Finally, it obtains an ordered list of nests that are believed to
contain keywords close to that associated with the ant, and moves to the first one that is
reachable.

Algorithm 2 illustrates the algorithm for a SearchAnt. The ant constructor takes three
parameters: a request identifier, used by the originating nest to associate replies with a
previous requests; a string containing the keywords to search for; and the hashed keyword
associated with this ant. In addition, SearchAnts also carry the path followed by the ant,
allowing it to backtrack and to avoid duplicate visits to the same nest. When a SearchAnt
arrives at a nest, it queries the local storage for documents satisfying the search query.
These are added to its set of matchass] that is carried with the ant. Unless the TTL of
the SearchAnt has been exhausted, it obtains an ordered list of nests that are believed to
contain keywords close to that included in the ant, and it moves to the first reachable nest
in the list. Once the SearchAnt has reached its TTL, it will backtrack to the originating
nest. While going back, the SearchAnt will update both the distributed index and routing
tables in its path, allowing other ants to improve their performance in finding similar
documents.

The only task of a ReplyAnt is to return to the originating nest and deliver a reply.
Given its simplicity, we omit the algorithm.

Algorithm 1 InsertAnt

classinsertAnt implementsAnt {
InsertAnt(Docld docid, URL url, Key keyhash
this.docid = docid;
this.url = url;
this.keyhash = keyhash;

path = 0;

}

void run(AntView view) {
urlStore = view.getStorage(URL.STORAGE); {Obtain reference to local storages
route = view.getStorage(GNUTANT);
path.add(view.getNestld()); {Update the path with this nest
urlStore.addResource(docid, keyhash, url); {Add the url to the local URL storage
route.addKeyhash(keyhash, path.getFirst()); {Associate originating nest with keyword hash
natList = route.getNextNest(keyhash, path); {Get list of possible next negts
do {

moved = view.move(nxtList.get(i + +)); {Move to the next nest that is reachaple

} while (Imoved);

}

Algorithm 2 SearchAnt

classSearchAnt implementsAnt {
SearchAnt(Reqld rid, String query, Key keyhash)
this.rid = rid;
this.query = query;
this.keyhash = keyhash;

path = (;
¥
void run(AntView view) {
urlStore = view.getStorage(URL_.STORAGE); {Obtain reference to local storagpes

route = view.getStorage(GNUTANT);
if (view.getTTL() > 0) {

path.add(view.getNestld()); {Update the path with this nest
size = path.size();
urls.add(urlStore.getResources(query)); {Get matching urls from local URL storage
natList = route.getNextNest(keyhash, path); {Get list of possible next nests
natList.addLast(path.getFirst()); {Move home if nxtList exhausted
do {
moved = view.move(nxtList.get(i + +)); {Move to the next nest that is reachaple
} while (Imoved);
} else{
if (size > 0) {
urlStore.addResources(urls); {Update local storage with resources foynd
route.addKeyhash(keyhash, path.getLast()); {Update routing storage
view.move(path.get(size — —)); {Move backwargl
} else{
view.result(rid, urls); {Deliver resultg
}

}
}
!

~

=}

X
N
@

n
o

@

40% /
30%

5}

Successful searches
Number of hops

3

TP TP PP T T T L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of searches Number of searches

Figure 6: Search success rate. Figure 7: Number of hops until first reply.

3.2 Simulation Results

In this section we present an evaluation of preliminary results for the Gnutant application
obtained using the Anthill simulation environment. In order to render our simulation
more realistic, we have collected a set of 10,000 query strings by monitoring the Gnutella
network over a period of approximately 30 minutes. The obtained query strings were also
used as the names for 10,000 documents, all of which were inserted into the nest network
a priori to running the simulation. Thus potentially, all of the queries could have been
satisfied. Furthermore, the routing storages was initialized with randomly generated SHA
keys, causing the ants to move randomly in the beginning. The simulation was run on
a static 2,000-node nest network with a logically fully meshed connectivity. After the
insertion phase, 20,000 search requests were issued and statistics for the behavior of the
system was collected. Search requests for the simulation were generated by randomly
picking queries from the set of 10,000 Gnutella query strings. The TTL parameter for
the search ants was fixed at 100 hops. The simulation was repeated ten times in order to
obtain average values.

The simulation results are shown in Figures 6 and 7. Figure 6 shows the success rate
for search requests, while Figure 7 shows the number of hops necessary for the first reply
to a search request. As expected, both figures confirm that the performance of the system
improves over time, as the total number of requests performed increases and the content
of the distributed index evolves. Furthermore, we can see from the figures that the system
converges towards a 65% success rate for searches and approximately six hops for the
average search depth.

3.3 Discussion

In the simulation we used a logically fully meshed network, however in a real network
deployment, information from the local routing storage could be exploited for connection
establishment. This would limit the number of connections to the size of the routing
storage.

Although not shown in the algorithms in this paper, the Gnutant ant species can easily
be adapted to suppadader anonymityThis can be achieved by the requester augment-
ing the path with an arbitrary number of nest entries before adding its own nest identifier.
This will prevent other nests from inferring the identity of the originator of an ant. Sup-
porting publisher anonymitys more difficult, and does not admit use of URL storages,
but instead requires copying documents along the path as in Freenet [3].

The current implementation of Gnutant does not support detection and removal of stale

10

URLSs from the URL storage. Assuming network partitions and nest crashes are transient,
the main reason for a URL to become stale is that a user cease to share a document for
a “long” period of time. One approach to resolve this problem is to add the notion of a
leaseto the URLSs stored in the distributed index; nests that do not crash and keep sharing
their resources may periodically launch InsertAnt to refresh the leases.

4 Related Work

Our Gnutant application can be compared with existing document sharing systems. In
Gnutella [9], queries are text strings transmitted through broadcasting: each node receiv-
ing a query forwards it to all its neighbors. Being based on broadcasting, Gnutella is
prone to serious scalability problems , and to avoid an exponential growth in the number
of messages exchanged, strict limits are imposed on the TTL of messages and the num-
ber of neighbors known to each node. Unfortunately, these limits restrict the reach of a
Gnutella query and thus the number of matching replies. Gnutant inherits the free search
capability of Gnutella, without relying on inefficient broadcasting techniques.

In Freenet [3], each document is associated with a key obtained by hashing the doc-
ument name. Search requests contain a single key, representing the desired document.
Requests are not broadcast; instead, they are routed through the network using informa-
tion gathered by previous requests. Freenet routing is based on the closeness between
keys: if a node is unable to satisfy a request locally, it is forwarded to the node that is
believed to store documents whose keys are closest to the requested key. The main limi-
tation of Freenet is that queries are limited to documents with well-known names. Anthill
adopts a routing technique similar to that of Freenet, but adds the possibility of performing
free search queries by hashing a set of keywords associated with the document, possibly
extracted from the filename, rather than using the complete filename. Another major dif-
ference between Gnutant and Freenet is that Gnutant builds a distributed document index,
and do not move the documents unless requested by the user. From this perspective,
Gnutant can be viewed as a distributed search engine.

Despite the fact that Gnutant was designed for document sharing, the underlying mech-
anism could be used to implement a generic lookup service with an interface similar to
that of the Chord system [4]. Our lookup service would be probabilistic, since we cannot
guarantee that even existing name-value associations will be returned when performing
a lookup. Using an ant-based implementation of a distributed lookup service provides
ad hoc replication of the name-value associations, rather than uniform replication as pro-
vided by Chord. The drawback of uniform replication in a highly dynamic P2P system is
that it requires a fairly complex rearrangement of replicas. Using ad hoc replication has
the advantage that popular lookups will return quickly, while the drawback is that some
(unpopular) index data may be lost due to lack of storage space at peers. Loss of index
data may be resolved by reinserting the association at periodic intervals.

5 Conclusions

In this paper we have presented Gnutant, a novel document sharing application imple-
mented using the Anthill framework. Gnutant provides users with free search capabili-
ties, without leading to strict limits on the overall scalability of the system. Preliminary
simulation results indicate that Gnutant performs well with respect to finding documents.

11

In addition to its novelty, Gnutant also demonstrates the simplicity of developing P2P ap-
plications using Anthill. We plan to use Anthill to study and evaluate properties of several
existing P2P algorithms. We are implementing ants that mimic the behavior of Freenet,
for the purpose of comparing it with Gnutant and studying how the reliability, availability
and performance of hash-based routing may be improved.

We also plan to perform additional simulations with Gnutant, to reveal its ability to
tolerate dynamic environments and to determine its impact on the network load. Further
analysis is also required to determine the propagation time for replicas of a new document,
relative to the life-time of the content in distributed index and routing storages.

In addition to our work on Gnutant, we also continue the development of the Anthill
framework. In particular we are investigating extensions to allow ant algorithm parame-
terization to be evolved through evolutionary techniques.

References

[1] David Anderson. SETI@home. In Andy Oram, editeeer-to-Peer: Harnessing the Benefits
of a Disruptive Technologyhapter 5. O'Reilly & Associates, March 2001.

[2] Ozalp Babaglu, Hein Meling, and Alberto Montresor. Building Peer-to-Peer Systems with
Anthill. Submitted for publication, July 2001.

[3] lan Clarke, Oskar Sandberg, Branden Wiley, and Theodore W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Hannes Federrath, Bditor,
ceedings of the Workshop on Design Issues in Anonymity and Unobserydbdikeley,

CA, July 2000.

[4] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, lon
Stoica, and Hari Balakrishnan. Building Peer-to-Peer Systems With Chord, a Distributed
Lookup Service. IrProceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS) Schloss Elmau, Germany, May 2001. IEEE Computer Society.

[5] FIPA. FIPA Peer-to-Peer Positioning Paper. Technical Report F-OUT-00076, Foundation
for Intelligent Pyhsical Agents, December 2000.

[6] Stanley P. Franklin and Arthur C. Graesser. Is it an Agent, or Just a Program?: A Taxon-
omy for Autonomous Agents. IRroceedings of the 3rd International Workshop on Agent
Theories, Architectures, and Languagpages 21-35, 1996.

[7] Groove Networks. http://www.groove. net.
[8] Project IXTA. http://www.jxta.org.

[9] Gene Kan. Gnutella. In Andy Oram, editd®eer-to-Peer: Harnessing the Benefits of a
Disruptive Technologychapter 8. O'Reilly & Associates, March 2001.

[10] Peer-to-Peer Working Group. http://www.p2pwg.org.

[11] Clay Shirky. Listening to Napster. In Andy Oram, edit®eer-to-Peer: Harnessing the
Benefits of a Disruptive Technolggshapter 2. O'Reilly & Associates, March 2001.

[12] Tony White and Bernard Pagurek. Towards Multi-Swarm Problem Solving in Networks. In
Proceedings of the 3rd International Conference on Multi-Agent Systems (1GN2GS.

[13] Tony White and Bernard Pagurek. Emergent Behavior and Mobile Agent®&rolceed-
ings of the Workshop on Mobile Agents in the Context of Competition and Cooperation at
Autonomous Agent4999.

12

