
Plug and Play for Telecommunications –
Architecture and Demonstration Issues∗

Finn Arve Aagesen, Bjarne E. Helvik, Hein Meling and Ulrik Johansen
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

Abstract

An architecture for plug-and-play to be applied for telecommunication systems is pre-
sented. The architecture is based on a theatre metaphor. Plays define the functionality of the
system. PaP components are realised by actors playing roles defined by manuscripts. An ac-
tor’s capabilities define his possibilities for playing various roles. The usability of the architec-
ture will be validated through specification, implementation and testing of a demonstrator. The
PaP system implementation design and the functionality of a tele-school based demonstrator
is presented.

Keywords: Plug-and-play, Architecture, Telecommunication, Teleservices, Smart Networks,
Intelligent Networks, Active Networks.

1 Introduction

Grade of network intelligenceis the efficient flexibility in the execution of teleservices and the
efficient flexibility in the introduction of new teleservices. Intelligent Networks [ITU92], Telecom-
munication Information Networking Architecture [TINA95], Mobile Agents and Active Networks
([Bies97], [Bies98], [Raza99], [Tenn97]) are all solutions aimed to improve the network intelli-
gence.

Plug-and-play (PaP) for telecommunications means that the hardware and software “parts”, as
well as complete network elements, that constitute a communication system, have the ability to
configure themselves when installed into a network (to plug) and then to provide services (to play)
according to their own capabilities, the service repertoire and the operating policies of the system.
Plug-and-play functionality means utterly increase of network intelligence.

A Plug and play system, as discussed here, shall be:i) Flexible and adaptable,ii) Robust
and survivable, andiii) QoS aware and have resource control. The goal of the plug-and-play
technology is to significantly simplify and speed up the tasks of deployment, installation, operation,
management, maintenance and evolution. However, system structure and functionality to ensure a

∗This work is done within the projectPlug-and-play for Network and Teleservice Componentssupported by The
Norwegian Research Council.



dependable and traffic handling capable solution are also important system properties. In [Aage99],
needed properties to realise the qualitiesi)-iii) are specified.

The concept PaP stems from the personal computing area. PaP simply means that you plug-in
and then the system works. In these systems, the plugged in component as well as the framework
haspredefinedfunctionality. We denote thisstatic PaP. A more general kind of PaP is when the
plugged-in unit has a set of basic capabilities, but its functionality is defined as a part of the plug-in
procedure and it can be changed dynamically. We denote this asdynamicPaP. An example is a
cellular phone which obtains the services it provides depending on its inherent capabilities, which
user that logs on, and which network it is attached to.

With dynamic PaP, the definition of individual components and possibly, the overall structure
of components can be changed on-line. One aspect of dynamic PaP is to change the services that a
component provides. Another is to propagate the ability to use the service to all the service users.
The focus of this paper is on dynamic PaP.From now on the concept Plug-and-play meansdynamic
Plug-and-play.

Implementation of the PaP system concepts described in this paper is based onmobile code.
Both Mobile Agents and Active Networks are based on mobile code. Solutions to PaP within
telecommunication networks has also been proposed based on Mobile Agents ([Bies97], [Raza99]).
However, the PaP functionality proposed are less comprehensive compared to the PaP functional-
ity proposed in this paper. Note also that PaP, as defined here, has a wider scope of the network
flexibility and adaptability than the above referred mobile agent and active network approaches.

A PaP demonstrator based on a tele-school application is being specified and implemented.
The main purpose is to demonstrate the usability of the dynamic PaP architecture presented in
Section 2. Section 3 discusses implementation issues. The tele-school demonstrator is presented
in Section 4. Section 5 gives conclusions.

2 A PaP Reference Architecture

2.1 PaP components

The entities in the system subject to PaP are thePaP components, which are real-world “concrete”
reactive hardware and/or software modules. These can becombined hardware/softwaremodules
with one or more external hardware interfaces, orpure software modules. These must interface
with a software platform capable of running PaP application software.

Pure hardware modules are not feasible in the context of dynamic PaP. PaP components will
coexist with components that do not have the PaP functionality. These are denoted as non-PaP
components. A PaP component cancontainother PaP components. All PaP components have
a relationship toPaP support. The logical relationships between the PaP components is partly
related to how PaP is solved and partly to the specific functionality of the system.

2.2 The functional object model

PaP components are composed from (one or more) interacting instances of PaP functional objects,
where each instance is defined by reference to an object type. This means that the PaPcomponent
functionality is defined by afunctional object modelconsisting offunctional PaP objects.



ISO’s reference model for Open Distributed Processing (ODP) [Duts96] defines the enterprise,
computational, information, engineering and technical viewpoints. The computational and the en-
gineering viewpoints are ofprimary interestwith respect to PaP. The PaP components are basically
engineering viewpoint objects. The PaP components have a computational viewpoint specification
by the PaP functional objects, which are basically computational viewpoint objects. The compu-
tational model will also model the information which is subject to dynamic changes caused by the
behaviour. Information models are supplementary models supporting the behaviour models.

Most object-oriented systems supports dynamic creation and removal of individual object in-
stances. While this may be sufficient for static PaP, dynamic PaP requires in addition that:

• it is possible to change the definition of object instances and object instance structures,

• to propagate the effect of such changes to involved object instances.

Thus, dynamic PaP require a PaP support system with the ability to manipulate type definitions,
and to dynamically change object behaviours and object structures according to the changes of the
corresponding types. This situation has many similarities with the theatre, which is chosen as a
model to describe the support functionality of the PaP system. The basic structure of the PaP
system is illustrated in Figure 1. This model also acts as a “bridge” between the PaP component
specification and the functional PaP object specification. PaP components are realised by actors
and they are the entities realising the PaP functionality objects.

Actor
�

Playing−base

Manuscript−base

Director

Repertoire−base

Figure 1: PaP system - Basic structure.

The model has many actor instances, one instance of a PaP-director, one instance of a repertoire-
base, one instance of a manuscript-base and one instance of a playing-base. For simplicity, the
system is in the present version modelled as a centralised system. An E-R model comprising
important PaP concepts is illustrated in Figure 2.

An actor is a generic object with a generic behaviour, able to behave according to amanuscript.
An actor also has a defined set ofcapabilities, which is the ability or power to do something. In the



Manuscript

1

*
�

Supervise

Follow
*

�

1

*
�

ReferTo

Interface

Has

1

11
*

�

Follow

Term−manus
� Dynamics−manus

Role

*
�

Projected to
*

�

Follow
Projected

Capability

Has
*

�

1

Need

1

*
�

Director

Actor
�

1

1

1

1

1

*
�

1

Play

Has

Has
*

�
1

ReferTo

1

*
�

Defines

1

Role−session

Repertoire

Figure 2: PaP concepts.

following a short explanation of the concepts in Figure 2 is given. For more details it is referred to
[Aage99].

A play is a defined autonomous functionality. The play defines the context for relationships
between PaP objects and their behaviour. One important PaP object functionality necessary to
initialise any play is thedirector. A director behaviour is also defined by an instance of a play.

Themanuscript-basehas the manuscripts used by the actors to play their roles. Theplaying-
basekeeps a structural model of the instances of PaP objects that is actually playing. Therepertoire-
basekeeps an overview of the potential plays and roles. Actors get an instance of a manuscript
from the manuscript-base via the PaP-director. ARole-sessionis a projection of the behaviour of
the actor with respect to one of its interacting actors.

An actor is able to play various roles. Therole is defined by a manuscript which defines the
total behaviour of an actor. Different from the theatre, and caused by the nature of telecommuni-
cation service providing systems, an actor can have its behaviour related to various plays at a time.
However, an actor performs only one manuscript at a time. A PaP component, however, can handle
various manuscripts by using various actors playing different manuscripts.

The behaviour of the role as well as the role-sessions are described as EFSMs. The whole
role is composed by the logical adding of the RoleSession and an additional EFSM denoted as
theRoleSessionCombiner. A RoleSessionCombiner definition specifies how all RoleSessions for
a manuscript shall be coordinated.



2.3 PaP support functionality

The following functions are needed: Play plug-in, Play changes plug-in, Dynamic detection of
needs for actors/plays/roles, Actor plug-in, Actor behaviour plug-in, Actor play, Actor change
behaviour, Actor behaviour plug-out, Actor plug-out and Play plug-out. Further details are given
in [Aage99].

The functions:actor behaviour plug-in, actor playandactor behaviour plug-outcomprise the
initialisation of a generic actor pending for a manuscript, performing the manuscript, and finally
making the actor pending for a new manuscript. This functionality is denoted as thebasic PaP
functionality. The actor is initialised by first activating its PaP-director. An actor negotiates with
the PaP-director in order to obtain its behaviour. The PaP-director will create an instance of a
manuscript with all necessary parameters bound particularly for the actor. The PaP-director also
acts as a binding object which helps to establish communication or interactions among actors.
After receiving a manuscript from the PaP-director, an actor will start acting according to the spec-
ification described in the manuscript. From this point on in time the actor becomes autonomous
and independent of the PaP-director until it terminates or want to change its behaviour.

3 PaP System - Implementation Design

We differ between two types of actors;ApplicationActorthat implement some non PaP specific
functionality by making use of the PaP support functionality, andDirectorActor that shall imple-
ment the PaP support functionality.

To describe the actor concept as an executing entity, some design related concepts are needed.
The most obvious hardware and software specific concepts involved arenodeandprocess/thread.
A node maps directly to a computer, which again will map one-to-one to the PaP specific design
conceptPaP Support Execution Context (PSE). A process/thread will map one-to-one to an oper-
ating system process or thread, which again maps to the PaP specific conceptPaP Support System
(PSS)/PaP Support Management (PSM). In Figure 3 these design related concepts are illustrated.

Figure 4 shows the layering of the functionality (i.e. the PaP layered model). The PaP relevant
part consists of five separate layers, each having its specific functionality. PSE also define the
PaP functionality that is termed thePaP Static Basic Supportin the model. Static in this sense
means that changes/extensions of the PSE functionality must be backward compatible with earlier
versions because this functionality represents the “bootstrap” that is necessary to be able to run
PaP applications at nodes. This functionality must be manually installed at the node before PaP
applications can be installed and activated.

The totality of use and implementation of the PaP support functionality is distributed between,
and performed by the modules defined in the PaP layered model. The execution of one function
may involve one or more of the modules in the layered model.

All layers in the model, except for ”PaP specific applications” and ”Non PaP applications” are
completely independent of the applications themselves. The PaP functionality interfaces to the non
PaP world through the infrastructure technology at the bottom layer, and to any type of non PaP
applications at the top layer.

A PaP communication infrastructure (PCI)architecture based on ”standardised” technological
solutions will usually consist of three layers with the operating system functionality (e.g. Unix



Figure 3: Engineering view of PaP concept representations.

or Windows NT) at the bottom, the network communication functionality (e.g. TCP/IP) in the
middle, and some distributed system solution (e.g. CORBA ORB or Java RMI) at the top. The
top layer may be omitted, but that will require a more complex implementation of the interfacing
module PSE if the PaP functionality require a distributed system solution.

PaP Support Execution Context (PSE)makes it possible to run PaP software on a node, and
also PaP functionality (i.e. represented by actors) on different nodes to interact with each other.
PSE is able to receive requests from other PSEs, interpret these requests and take proper actions.
PSE will also do start-up and initialisation of PSS/PSMs or PCIs if that is required.

PaP Support System/PaP Support Management (PSS/PSM)makes it possible to create actors
within the context of an operating system process/thread, to give these actors behaviour, and
to communicate information between these actors and their environments. There will be one
PSS/PSM instance within each process/thread intended for PaP functionality (i.e. actors). PSM
shall support DirectorActors, while PSS shall support ApplicationActors.

PaP Director is both responsible for the management of the PaP application definitions (i.e.
theRepertoire-andManuscript-bases), and for the management of information concerning Actors
(i.e. thePlaying-base). The PaP Director is involved in the execution of almost all types of PaP
support functionality as specified in Section 2.3. A PaP Director instance becomes a DirectorActor.

PaP Extended Management (PXM)is additional PaP services not required for the PaP support
functionality, but rather PaP extensions related to PaP operational quality. These services include
functionality related to a ”robust and survivable” PaP system, and a PaP System to be ”QoS aware
and to provide resource control”.

PaP Extended Support (PXS)is required for the utilisation of PaP Extended Management
(PXM) from actors.

PaP applicationsis the collection of ApplicationActors. Actor instances are created using
the ”ActorPlugIn” function, they get their behaviour using ”ActorBehaviourPlugIn” and ”Actor-
ChangeBehaviour”, they start execution using ”ActorPlay”, and they terminates when using ”Ac-
torPlugOut”.



Figure 4: PaP layered model.

Non PaP applicationsis allowed to interact with actors outside the control of PSS. Such inter-
actions can be done without the intervention of any parts of the PaP system. However, such inter-
actions must not result into control actions that are in conflict with the responsibility of the PaP
System. Non PaP software is also allowed to use the PaP functionality supported by PSS/PSM.
This possibility is actually necessary to be able to install and start the first operational PaP sys-
tem. In this case the Non PaP application may interface to the same interface as used by the PaP
specific applications, however the Non PaP application will and must perform within a separate
process/thread and must be considered as one specific actor as seen from the PSS point of view.

4 The Tele-School Application

A tele-school application is selected as the application to be used in a PaP demonstrator. The main
concepts are theschool, theschool application manager, students, teachers, coursesandlectures.
Basic services for communication of information between teachers and students, where teacher
and students physically may be located in different geographical areas, may be either of interactive
dialogue (chattype service), addressed non-interactive (mail type service), and non-addressed non-
interactive (newstype service).

Multimediaaudio, videoandtextare used for communication of information. Multimedia PC
type equipment is used for interaction between teachers/students and the application system.

The tele-school services provided arereal-time lecture, lecture on demandandstudents off-line
support. The first is the real-time lecture performance by a teacher to attached students. Students



may ask questions and get answers from the teacher. Lecture on demand offers the possibility for
students to go through already performed lectures that has been ”electronically recorded”. Students
may freely select when to go through the lecture and they also may ask questions to the teacher,
which will answer question when available by using the Student off-line support functionality.
Figure 5 shows an example structure for the real-time lecture function.

Figure 5: Example real-time lecture architecture.

4.1 An example scenario

First regard an example MSC describing a small part of the tele-school application, as is shown in
Figure 6. The ”SchoolUserInterf”, ”SchoolClient” and ”SchoolServer” has been identified as three
roles to be played, and the functionality shown in the figure is related to user system log-on, access
verification and the user selection of what type of work to do. This is a part of the real-time lecture
functionality. A set of information elements (e.g. ”WindowNew”, ”WindowClose”) to be used for
actor parties interactions has been identified. RoleSessions are specified as well defined sequences
of interactions between two actor parties and are indicated by vertical extra lines in the figure.
The first identified RoleSession used by roles ”SchoolUserInterf” and ”SchoolClient” contains the
information elements ”WindowNew”, ”LogonEvent” and ”WindowClose”.

The ”SchoolClient” role has two RoleSessions active at the same time – one with the ”Schoo-
lUserInterf” and one with the ”SchoolServer”. The coordination between these two RoleSessions
is what shall be the task of the RoleSessionCombiner.

4.2 Integration with PaP functionality

Figure 6 shows application specific aspects of the tele-school, in addition to the identification of
roles and role sessions examples.



Figure 6: Example interactions between parties in the role description.

So how does the PaP specific concepts and functionality apply together with the tele-school
application? The PaP functionality is generic, but it is important to know how it is integrated into
the application because the application designers must consider both the application and the PaP
functionality. Figure 7 extends Figure 6 to show the mapping from roles to actors, the use of PaP
functionality in application execution, and to show how an application become available for use.

The figure shows that each of the three roles defined in Figure 6 are played by separate actors,
named ”a1”, ”a2” and ”a3” in the figure. In addition there exists an actor ”ctx”, which has the
responsibility of tele-school application installation and start-up, and actor ”d1”, which serves as
the ”PaP Director” for all actors.

The application has been distributed on two nodes, namely aClient Node, which runs the
client specific application part, and aServer Node, running the parts of the application common
to multiple tele-school clients. The PaP Director actor has been selected to perform on the server
node. The MSC example shows that the tele-school application has not already been ”installed”
and is therefore installed by the ”ctx” actor (usingPlayPlugIn(play=TeleSchool) ) prior
to starting a client part (usingActorPlugIn(role- =SchoolClient) ) of the application.

PlayPlugIn is the PaP function used to install play definitions into a repository managed by
the PaP director. This must be done before actors can apply plays. Play definitions in a repository
may be changed byPlayChangesPlugIn , and removed by usingPlayPlugOut .

Role sessions are created byActorPlugIn and terminated byActorPlugOut . In addition
ActorPlugIn will imply the creation of an actor instance if no existing actor is able to satisfy
the requirements to cooperating actor considering location, role and capabilities specified by the



Figure 7: Example interaction between actors in an application.

ActorPlugIn parameters.ActorPlugOut will destroy an existing role session between two
actor parties, and may imply the termination of an actor if that has been specified as a parameter
to ActorPlugOut or if the actor’s termination condition specifies so.

The figure indicates that the Director is involved in the execution of many of the PaP specific
functions (e.g.PlayPlugIn , ActorPlugIn , ActorPlugOut ). This is necessary, because
Director serves, not only as a repository for component specifications, but also as a repository
for existing actor instances. This means that, as seen from actors, the PaP Director become a
central server for the actor. The PaP specific functionRoleSessionAction , which is used
for communication of information on established role sessions, do not involve the PaP Director
because its functionality has no influence on the PaP Director work.

Two levels of plug-in/plug-out is illustrated in the figure. First, the plug-in of the specification
of the PaP application functionality (i.e. the component installation) done by thePlayPlu-
gIn , then the plug-in/out of the applications themselves (i.e. the component execution) done by
ActorPlugIn /ActorPlugOut . Note thatActorPlugOut not necessarily means that the
plugged out actor terminates. It is the interaction sequence (i.e. the role session) between two
actor parties that is terminated.

It has not been shown in the figure that it is possible to dynamically change both component
definitions (by usingPlayChangesPlugIn ) and actors’ behaviour (by usingActorChange-
Behaviour ) for an operational system. Procedures have been defined for taking care of both
these situations that may occur as results of actor requests.

5 Conclusions

An architecture concept as well as an implementation design of this architecture concept for dy-
namic plug-and-play has been presented. The vision is a concept to be used to simplify and speed



up the tasks of deployment, installation, operation, management, maintenance and evolution of
various types of telecommunication equipment and services.

Plug-and-play components has been defined as real-world concrete reactive hardware and soft-
ware modules. The PaPcomponentfunctionality is defined by aPaP functional object model,
consisting offunctional PaP objects. A functional PaP object is an instance of an PaP object type.
Dynamic PaP requires that it is possible to change the behaviour of an object and to propagate the
effect of such changes. A functionality analogous to the theatre is chosen for the realisation of PaP.
The most central issues are actors, roles, plays, manuscripts and capabilities. An actors capability
defines his possibilities for playing various roles according to manuscripts. The model presented
is a step towards a complete architecture specification.

The specification of a tele-school application to be used for demonstration and validation of
the various elements of the plug-and-play architecture has also been presented. The application
involves several types of services such as real-time lecture, lecture on demand and students off-
line support, suitable for the validation process. An example scenario is given. The application is
now under implementation.



References

[Aage99] Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling, Rolv Bræk
and Ulrik Johansen, Towards A Plug and Play Architecture for Telecommunications,
Proceedings of IFIP SMARTNET’99, Bangkok, November 1999.

[Bies97] Andrzej Bieszczad and Bernard Pagurek, Towards Plug- and Play Net-
works with Mobile Code, Proceedings of ICCC’97, November 1997,
http://www.sce.carleton.ca/netmanage/publications.html.

[Bies98] Andrzej Bieszczad and Bernard Pagurek and Tony White, Mobile Agents for Net-
work Management, IEEE Commucations Surveys, volume 1 number 1, 1998,
http://www.sce.carleton.ca/netmanage/publications.html.

[Duts96] Joubine Dutszadeh and Elie Najm, Formal Support for ODP and Teleservices, Pro-
ceedings of the IFIP/ICCC conference on Information Network and Data Communi-
cation, June 1996.

[ITU92] ITU-T, Principles of intelligent network architecture, October 1992.

[Raza99] S. K. Raza and Andrzej Bieszczad, Network Configuration with Plug
and Play Components, The Sixth IFIP/IEEE International Sympo-
sium on Integrated Network Management (to be presented) in 1999,
http://www.sce.carleton.ca/netmanage/publications.html.

[Tenn97] David L. Tennenhouse, Jonathan M. Smith, David Sincoskie, David J. Wetherall and
Gary J. Minden, A Survey of Active Network Research, IEEE Communications Mag-
azine, Volume 35 no 1, 1997, pages 80-86.

[TINA95] TINA Consortium, TINA-C Deliverable: Overall Concepts and Principles of TINA
V1.0, February 1995.


